ЖИДКОСТИ КАК И ТВЕРДЫЕ ТЕЛА ПОДЧИНЯЮТСЯ НЕ ПОДЧИНЯЮТСЯ УСЛОВИЯМ ПЛАВАНИЯ ТЕЛ

Что это за величина

Прежде чем говорить о силе Архимеда, нужно понять, что это вообще такое — сила.

В повседневной жизни мы часто видим, как физические тела деформируются (меняют форму или размер), ускоряются и тормозят, падают. В общем, чего только с ними не происходит! Причина любых действий или взаимодействий тел — ее величество сила.

Сила — это физическая векторная величина, которая воздействует на данное тело со стороны других тел. Сила измеряется в ньютонах — единице измерения, которую назвали в честь Исаака Ньютона.

Поскольку сила — величина векторная, у нее, помимо модуля, есть направление. От того, куда направлена сила, зависит результат.

Вот стоите вы на лонгборде: можете оттолкнуться вправо, а можете влево — в зависимости от того, в какую сторону оттолкнетесь, результат будет разный. В этом случае результат выражается в направлении движения.

Узнай, какие профессии будущего тебе подойдут 10 минут — и ты разберёшься, как стать тем, кем захочешь

Открытие закона Архимеда

Так вышло, что закон Архимеда известен не столько своей формулировкой, сколько историей возникновения.

Легенда гласит, что царь Герон II попросил Архимеда определить, из чистого ли золота сделана его корона, при этом не причиняя вреда самой короне. То есть расплавить корону или растворить — нельзя.

Взвесить корону Архимеду труда не составило, но этого было мало — нужно ведь определить объем короны, чтобы рассчитать плотность металла, из которого она отлита.

Рассчитать плотность металла, чтобы установить, золотая ли корона, можно по формуле плотности.

Формула плотности телаρ = m/V

Дальше, согласно легенде, Архимед, озабоченный мыслями о том, как определить объем короны, погрузился в ванну — и вдруг заметил, что уровень воды в ванне поднялся. Тут ученый осознал, что объем его тела вытеснил равный ему объем воды, следовательно, и корона, если ее опустить в заполненный до краев таз, вытеснит из него объем воды, равный ее объему.

Решение задачи было найдено и, согласно самой расхожей версии легенды, ученый закричал «Эврика!» и побежал докладывать о своей победе в царский дворец (и так торопился, что даже не оделся). 🤦🏻‍♂️

Попробуйте онлайн-курс подготовки к ЕГЭ по физике с опытным преподавателем в Skysmart!

Выберите идеального репетитора по физике15 000+ проверенных преподавателей со средним рейтингом 4,8. Учтём ваш график и цель обучения

Формула и определение силы Архимеда для жидкости

На поверхность твердого тела, погруженного в жидкость, действуют силы давления. Эти силы увеличиваются с глубиной погружения, и на нижнюю часть тела будет действовать со стороны жидкости большая сила, чем на верхнюю.

Равнодействующая всех сил давления, действующих на поверхность тела со стороны жидкости, называется выталкивающей силой или силой Архимеда. Истинная причина появления выталкивающей силы — наличие различного гидростатического давления в разных точках жидкости.

Определение архимедовой силы для жидкостей звучит так:

Выталкивающая сила, действующая на тело, погруженное в жидкость, равна по модулю весу вытесненной жидкости и противоположно ему направлена.

Формула архимедовой силы для жидкости
FАрх = ρжgVпогрНа планете Земля g = 9,8 м/с 2.

А теперь давайте порешаем задачки, чтобы закрепить, как вычислить архимедову силу.

Задача 1

В сосуд погружены три железных шарика равных объемов. Одинаковы ли силы, выталкивающие шарики? Плотность жидкости вследствие ничтожно малой сжимаемости на любой глубине считать примерно одинаковой.

Да, так как объемы одинаковы, а архимедова сила зависит от объема погруженной части тела, а не от глубины.

Задача 2

На графике показана зависимость модуля силы Архимеда FАрх, действующей на медленно погружаемый в жидкость кубик, от глубины погружения x. Длина ребра кубика равна 10 см, его нижнее основание все время параллельно поверхности жидкости. Определите плотность жидкости. Ускорение свободного падения принять равным 10 м/с2.

Сила Архимеда, действующая на кубик, равна FАрх = ρжgVпогр.

Vпогр. — объем погруженной части кубика,

ρж — плотность жидкости.

Учитывая, что нижнее основание кубика все время параллельно поверхности жидкости, можем записать:

FАрх = ρжgV погр = ρжga 2x

где а — длина стороны кубика.

ρ = FАрх / ga2x

Рассматривая любую точку данного графика, получим:

ρ = FАрхga2x = 20,25 / 10 × 7,5 × 10-2 = 2700 кг/м3

Ответ: плотность жидкости равна 2700 кг/м 3.

Условия плавания тел

Из закона Архимеда вытекают следствия об условиях плавания тел.

Почему корабли не тонут?Корабль сделан из металла, плотность которого больше плотности воды. И, по идее, он должен тонуть. Но дело в том, что корпус корабля заполнен воздухом, поэтому общая плотность судна оказывается меньше плотности воды, и сила Архимеда выталкивает его на поверхность. Если корабль получит пробоину, то пространство внутри заполнится водой — следовательно, общая плотность корабля увеличится. Судно утонет.
В подводных лодках есть специальные резервуары, которые заполняют водой или сжатым воздухом. Если нужно уйти на глубину — водой, если подняться — сжатым воздухом. Рыбы используют такой же принцип в плавательном пузыре — наполняют его воздухом, чтобы подняться наверх.
Человеку, чтобы не утонуть, тоже достаточно набрать в легкие воздух и не двигаться — вода будет выталкивать тело на поверхность. Именно поэтому важно не тратить силы и кислород в легких на панику и борьбу, а расслабиться и позволить физическим законам сделать все за нас.

Формула и определение силы Архимеда для газов

На самом деле тут все очень похоже на жидкости. Начнем с формулировки закона Архимеда:

Выталкивающая сила, действующая на тело, погруженное в газ, равна по модулю весу вытесненного газа и противоположно ему направлена.

Формула архимедовой силы для газов
FАрх = ρгgVпогрНа планете Земля g = 9,8 м/с 2.

Сила Архимеда для газов действует аналогично архимедовой силе для жидкостей. Давайте убедимся в этом, решив задачку.

Груз какой максимальной массы может удерживать воздушный шар с гелием объема 0,3 м3, находясь в атмосфере Земли? Плотность воздуха равна 1,3 кг/м 3. Гелий считать невесомым.

Подставляем значения и получаем:

FАрх = ρгgVпогр = 1,3 × 10 × 0,3 = 0,39 Н

По второму закону Ньютона для инерциальных систем отсчета:

FАрх = mg

Выражаем массу груза и подставляем значения:

m = FАрх / g = 0,39 / 10 = 0, 039 кг = 39 кг

Ответ: груз максимальной массы 39 г может удержать данный шарик с гелием.

Когда сила Архимеда не работает

Архимедова сила не работает лишь в трех случаях:

Закон Архимеда. Условия плавания тел

Помимо силы тяжести, на тело, погруженное в жидкость, действует выталкивающая сила — архимедова сила. Жидкость оказывает давление на все части тела, но давление не одинаковое. Ведь нижний край корпуса больше погружен в жидкость, чем верхний, и давление увеличивается с глубиной. Это означает, что сила, действующая на нижнюю сторону корпуса, будет больше, чем сила, действующая на верхнюю сторону. Следовательно, создается сила, которая пытается вытолкнуть тело из жидкости.

Величина архимедовой силы зависит от плотности жидкости и объема той части тела, которая находится непосредственно в жидкости. Сила Архимеда действует не только в жидкостях, но и в газах.

Закон Архимеда: на тело, погруженное в жидкость или газ, действует выталкивающая сила, равная весу жидкости или газа в объеме тела.

Сила Архимеда, действующая на погруженное в жидкость тело, может быть рассчитана по формуле:

На тело внутри жидкости действуют две силы: сила тяжести и сила Архимеда. Под действием этих сил тело может двигаться. Для плавания тела существует три условия:

Закон Архимеда распространяется и на воздухоплавание. Первый воздушный шар был создан в 1783 году братьями Монгольфье. В 1852 году француз Жиффар создал дирижабль — управляемый аэростат с воздушным рулем и пропеллером.

Силы, действующие на погруженное в жидкость тело

Наблюдение. Почему сложно погрузить мяч в воду и почему он выпрыгивает из воды, как только мы его бросаем? Почему в море плавать легче, чем в озере? Почему мы можем поднять камень в воде, а не в воздухе?

Газы очень похожи на жидкости. Воспитательная сила также действует на тела, находящиеся в газе. Под действием этой силы воздушные шары, метеозонды и детские шары, наполненные водородом, поднимаются вверх. А от чего зависит выталкивающая сила?

Опыт 1. Два тела разного объема, но одинаковой массы, погрузим полностью в одну и ту же жидкость (воду). Мы видим, что тело большего объема выталкивается из жидкости (воды) с большей силой.

Выталкивающая сила зависит от объема погруженного в жидкость тела. Чем больше объем тела, тем большая выталкивающая сила действует на него.

Опыт 2. Два тела одинакового объема и массы полностью погружены в разные жидкости, например воду и керосин. Неуравновешенность в данном случае свидетельствует о том, что на тело в воде действует большая плавучесть, это можно объяснить тем, что плотность воды больше плотности керосина.

Выталкивающая сила зависит от плотности жидкости, в которую погружено тело. Чем больше плотность жидкости, тем большая выталкивающая сила действует на погруженное в нее тело.

Обобщая результаты наблюдений и опытов можно сделать следующий вывод.

На тело, погруженное в жидкость (газ), действует выталкивающая сила, равная по значению весу жидкости (газа), вытесненной этим телом.

Это утверждение называется законом Архимеда, древнегреческого ученого, который открыл его и, согласно легенде, успешно применил его для решения практической задачи: он определил, содержала ли золотая корона царя Гиерона примеси серебра. Сила, которая выталкивает тело из жидкости или газа, также называется силой Архимеда.

Основываясь на законе Архимеда, вы можете сразу написать формулу для определения силы плавучести, но чтобы лучше понять, почему она возникает, мы выполним несложные вычисления. Для этого рассмотрим тело в форме прямоугольного стержня, погруженного в жидкость так, чтобы его верхний и нижний края были параллельны поверхности жидкости.

Посмотрим, к чему приведет действие сжимающих сил на поверхность этого тела.

Согласно закону Паскаля горизонтальные силы F3 и F4, действующие на симметричные боковые поверхности стержня, попарно равны по величине и противоположно направлены. Стержни вверх не толкают, а только сжимают с боков. Обратите внимание на силы гидростатического давления на верхнем и нижнем крае стержня.

Доказательство существования архимедовой силы

Мы уже знаем, что сила Архимеда является результатом сил давления жидкости на все части тела. На рис. 1 схематически показаны силы, действующие на участки одной и той же площади для тела любой формы. По мере увеличения глубины эти силы увеличиваются, поэтому равнодействующая всех сжимающих сил направлена вверх.

Рис.1. К доказательству закона Архимеда для тела произвольной формы

Однако теперь мы заменяем тело, мысленно погруженное в жидкость, той же жидкостью, которая «затвердела» и сохранила свою плотность (рис. 1). На это «тело» будет действовать та же архимедова сила, что и на это тело: ведь поверхность этого «тела» совпадает с поверхностью выбранного объема жидкости, а сжимающие силы на разных участках поверхности остаются прежними.

Заданный объем жидкости, которая «плавает» внутри той же жидкости, находится в равновесии. Это означает, что гравитационная сила Ft и действующая на нее архимедова сила Fa уравновешены, поэтому они имеют одинаковый размер и направлены в противоположном направлении (рис. 1).

Для тела в состоянии покоя сила тяжести равна весу, а это означает, что сила Архимеда равна весу заданного объема жидкости. А это объем погруженной части тела: ведь мы мысленно заменили ее жидкостью.

Таким образом, мы доказали, что на тело любой формы действует архимедова сила, которая по абсолютной величине равна весу жидкости в объеме, занимаемом телом.

Это доказательство — пример мысленного эксперимента. Это популярный метод рассуждения многих ученых. Но выводы по результатам мысленного эксперимента должны быть проверены в реальном эксперименте. Поэтому мы проверим закон Архимеда на опыте.

Навесим на пружину пустое ведро (так называемое ведро Архимеда) и на него небольшой камень любой формы (рис. 2, а). Обратите внимание на удлинение пружины и замените емкость под камнем, в которую налита вода до уровня сливной трубы (рис. 2, б). Когда камень полностью погружен в воду, вытесняющая его вода сливается через сливную трубу в стакан. Мы заметим, что удлинение пружины уменьшилось из-за плавучести.

Рис. 2. Опыт показывает, что сила Архимеда равна весу воды, вытесненной телом

Теперь давайте выльем воду, которую камень вытолкнул из стакана, в ведро Архимеда — это только увеличивает вес камня за счет веса воды, вытолкнувшей его. И мы увидим, что удлинение пружины такое же, как и до погружения камня в воду (рис. 2, в). Это означает, что сила Архимеда действительно равна весу воды, которую вытолкнул камень.

Равновесие тел в жидкости

Гравитационное поле Земли создает гидростатическое давление, которое приводит к существованию статической подъемной силы, действующей на тела, погруженные в жидкость. Закон, определяющий величину силы плавучести, был открыт Архимедом: данная сила (сила Архимеда (Fa)) равна весу жидкости, объем которой равен объему погруженной в нее части тела:

где ρ — плотность жидкости (газа); V — объем тела, находящийся в веществе; g — ускорение свободного падения.

Сила Архимеда проявляется только при наличии силы тяжести. Таким образом, в условиях невесомости гидростатическое давление равно нулю, что означает Fa = 0.

Сила Архимеда направлена вверх. Он проходит через центр масс вытесняемой телом жидкости (эта точка обозначается буквой С). Точка C называется центром возвышения тела. Положение точки плавучести определяет баланс и устойчивость тела плавучести.

Условия плавания тела в жидкости.

Закон Архимеда позволяет нам объяснить проблемы, связанные с парением тел. Представьте себе тело, которое помещено в жидкость и предоставлено самому себе. Тело тонет, когда его вес превышает вес вытесняемой им жидкости. Когда вес тела и вес жидкости, которую оно перемещает, одинаковы, тело находится в равновесии в жидкости.

Тело плавает и перемещается к поверхности жидкости, если вес жидкости, выталкиваемой телом, превышает вес тела. Когда он поднимается на поверхность жидкости, тело плавает. В этом случае деталь может выступать над поверхностью жидкости.

Условия плавания тел в жидкости для однородных тел (плотность вещества тела ρ=const) определяют следующим образом:

Для неоднородных тел используют понятие средней плотности, при этом среднюю плотность тела сравнивают с плотностью жидкости.

При рассмотрении движения тела на границе жидкостей имеющих разные плотности, учитывают, что сила Архимеда равна:

ρ1 — плотность первой жидкости; ρ2 — плотность второй жидкости; V1 — объем части тела, находящийся в первой жидкости; V2 — объем этого же тела, находящийся во второй жидкости.

Равновесие тел в жидкости

Если средняя плотность тела меньше плотности жидкости, часть тела будет выступать над поверхностью. Для плавучих сооружений очень важно понятие устойчивости плавания. При определении устойчивости баланса тела случаи делятся:

Если тело полностью находится в жидкости и плавает в ней (средняя плотность тела равна плотности жидкости), то для возможных поворотов и движений центр тяжести тела и центр плавучести не меняют свое положение относительно тела. Равновесие устойчиво, если центр тяжести тела находится ниже центра плавучести.

Если бы тело и жидкость были абсолютно несжимаемыми (или их сжимаемость была бы одинаковой), баланс тела был бы безразличен. Но на самом деле твердые тела, как правило, имеют меньшую сжимаемость, чем жидкости. Корпуса из таких материалов равномерно плавают в жидкостях одинаковой плотности.

Гораздо более сложный случай, когда тело не полностью находится в жидкости, когда деталь выступает над свободной поверхностью жидкости. В этом случае перемещение тела из положения равновесия вызывает изменение формы объема жидкости, которую тело вытесняет. Происходит изменение положения центра плавучести относительно тела.

Устойчивость равновесия такого тела определяется представлением о метацентре плавающего тела. Это точка, назовем ее M, которая получается на пересечении вертикальной оси симметрии тела и линии действия силы плавучести. Если метацентр расположен выше центра масс тела, то момент силы плавучести пытается вернуть тело в равновесие, а значит, тело плавает равномерно.

Примеры задач на плавание тел

Выделяют три агрегатных состояния веществ: жидкость, вода и газ. Все они различаются по своим свойствам. Особое место в этом списке занимают жидкости. В отличие от твердых тел, в жидкостях молекулы не расположены упорядочено. Жидкость – это особое состояние вещества, являющееся промежуточным между газом и твердым телом. Вещества в этом виде могут существовать только при строгом соблюдении интервалов определенных температур. Ниже этого интервала жидкое тело превратится в твердое, а выше – в газообразное. При этом границы интервала напрямую зависят от давления.


ЖИДКОСТИ КАК И ТВЕРДЫЕ ТЕЛА ПОДЧИНЯЮТСЯ НЕ ПОДЧИНЯЮТСЯ УСЛОВИЯМ ПЛАВАНИЯ ТЕЛ

Вода

Одним из основных примеров жидкого тела является вода. Несмотря на принадлежность к данной категории, вода может принимать форму твердого тела или газа – в зависимости от температуры окружающей среды. В процессе перехода из состояния жидкости в твердое, молекулы обычного вещества сжимаются. Но вода ведет себя совершенно иначе. При замерзании ее плотность снижается, и вместо того, чтобы тонуть, лед выплывает на поверхность. Вода в своем обычном, текучем, состоянии обладает всеми свойствами жидкости – у нее всегда имеется конкретный объем, однако, нет определенной формы.

Поэтому вода всегда сохраняет тепло под поверхностью льда. Даже если температура окружающей среды составляет -50°С, то подо льдом она все равно будет составлять около нуля. Однако в начальной школе можно не углубляться в подробности свойств воды или других веществ. В 3 классе примеры жидких тел можно приводить самые простые – и в этот список желательно включить воду. Ведь ученик начальной школы должен иметь общие представления о свойствах окружающего мира. На данном этапе достаточно знать, что вода в ее обычном состоянии является жидкостью.

Натяжение поверхности – свойство воды

Вода обладает большим, чем другие жидкости, показателем натяжения поверхности. Благодаря этому свойству образуются капли дождя, а, следовательно, и поддерживается круговорот воды в природе. Иначе пары воды не могли бы так легко превратиться в капли и пролиться на поверхность земли в виде дождя. Вода, действительно, является примером жидкого тела, от которого напрямую зависит возможность существования живых организмов на нашей планете.

Поверхностное натяжение объясняется тем, что молекулы жидкости притягиваются друг к другу. Каждая из частиц стремится окружить себя другими и уйти с поверхности жидкого тела. Именно поэтому мыльные и образующиеся при кипении воды пузыри стремятся принять жидкую форму – при этом объеме минимальной толщиной поверхности может обладать только шар.


ЖИДКОСТИ КАК И ТВЕРДЫЕ ТЕЛА ПОДЧИНЯЮТСЯ НЕ ПОДЧИНЯЮТСЯ УСЛОВИЯМ ПЛАВАНИЯ ТЕЛ

Жидкие металлы

Однако не только привычные для человека вещества, с которым он имеет дело в повседневности, принадлежат к классу жидких тел. Среди этой категории немало различных элементов периодической системы Менделеева. Примером жидкого тела также является ртуть. Это вещество широко применяется в изготовлении электротехнических приборов, металлургии, химической промышленности.

Ртуть является жидким, блестящим металлом, испаряющимся уже при комнатной температуре. Она способна растворять серебро, золото и цинк, образуя при этом амальгамы. Ртуть является примером того, какие бывают жидкие тела, относящиеся к категории опасных для жизни человека. Ее пары токсичны, опасны для здоровья. Поражающее действие ртути проявляется, как правило, через некоторое время после контакта отравления.

Металл под названием цезий также относится к жидкостям. Уже при комнатной температуре он находится в полужидкой форме. Цезий на вид представляет собой вещество золотисто-белого оттенка. Данный металл немного похож на золото по цвету, однако, светлее его.


ЖИДКОСТИ КАК И ТВЕРДЫЕ ТЕЛА ПОДЧИНЯЮТСЯ НЕ ПОДЧИНЯЮТСЯ УСЛОВИЯМ ПЛАВАНИЯ ТЕЛ

Серная кислота

Примером того, какие бывают жидкие тела, также являются и практически все неорганические кислоты. К примеру, серная кислота, на вид представляющая собой тяжелую маслянистую жидкость. У нее нет ни цвета, ни запаха. При нагревании она становится очень сильным окислителем. На холоде она не вступает во взаимодействие с металлами – например, железом и алюминием. Данное вещество проявляет свои характеристики только в чистом виде. Разбавленная серная кислота не проявляет окислительных свойств.

Свойства

Какие жидкие тела существуют помимо перечисленных? Это кровь, нефть, молоко, минеральное масло, алкоголь. Их свойства позволяют этим веществам легко принимать форму тары. Как и другие жидкости, эти вещества не теряют своего объема, если перелить их из одного сосуда в другой. Какие же еще свойства присущи каждому из веществ в данном состоянии? Жидкие тела и их свойства хорошо изучены физиками. Рассмотрим их основные характеристики.

Текучесть

Одна из главнейших характеристик любого тела данной категории – это текучесть. Под данным термином понимается способность тела принимать различную форму, даже если не него оказывается относительно слабое воздействие извне. Именно благодаря данному свойству каждая жидкость может разливаться струями, разбрызгиваться по окружающей поверхности каплями. Если бы тела данной категории не обладали текучестью, было бы невозможным налить воду из бутылки в стакан.

При этом данное свойство выражается у разных веществ в различной степени. Например, мед меняет форму очень медленно по сравнению с водой. Данную характеристику называют вязкостью. Это свойство зависит от внутреннего строения жидкого тела. Например, молекулы меда больше похожи на ветви дерева, а молекулы воды, скорее, напоминают шарики с небольшими выпуклостями. При движении жидкости частицы меда будто «цепляются друг за друга» – именно этот процесс и придает ему большую вязкость, нежели другим типам жидкостей.


ЖИДКОСТИ КАК И ТВЕРДЫЕ ТЕЛА ПОДЧИНЯЮТСЯ НЕ ПОДЧИНЯЮТСЯ УСЛОВИЯМ ПЛАВАНИЯ ТЕЛ

Сохранение формы

Нужно помнить и о том, что о каком бы примере жидких тел ни шла речь, они меняют только форму, но не меняют объем. Если налить воды в мензурку, и перелить ее в другую емкость, данная характеристика не изменится, хотя и само тело примет форму нового сосуда, в который его только что перелили. Свойство сохранения объема объясняется тем, что между молекулами действуют как силы взаимного притяжения, так и отталкивающие. Нужно отметить, что жидкости практически невозможно сжать посредством внешнего воздействия за счет того, что они всегда принимают форму контейнера.


ЖИДКОСТИ КАК И ТВЕРДЫЕ ТЕЛА ПОДЧИНЯЮТСЯ НЕ ПОДЧИНЯЮТСЯ УСЛОВИЯМ ПЛАВАНИЯ ТЕЛ

Жидкие и твердые тела отличаются тем, что последние не подчиняются закону Паскаля. Напомним, что данное правило описывает поведение всех жидкостей и газов, и заключается в их свойстве передавать оказываемое на них давление во все стороны. Однако нужно отметить, что те жидкости, которые обладают меньшей вязкостью, делают это быстрее, чем более вязкие жидкие тела. Например, если оказать давление на воду или спирт, то оно распространится достаточно быстро.


ЖИДКОСТИ КАК И ТВЕРДЫЕ ТЕЛА ПОДЧИНЯЮТСЯ НЕ ПОДЧИНЯЮТСЯ УСЛОВИЯМ ПЛАВАНИЯ ТЕЛ

В отличие от этих веществ, давление на мед или жидкое масло будет распространяться медленнее, однако, так же равномерно. В 3 классе примеры жидких тел можно приводить без указания их свойств. Более детальные знания школьникам понадобятся в старших классах. Однако если ученик подготовит дополнительный материал, это может поспособствовать получению более высокой оценки на уроке.

Плавание судна — что это за процесс

Плавание судна — это способность лодки, катера или корабля перемещаться по воде на дальние и близкие расстояния.

Плавать в воде может любое судно: маленькая деревянная лодочка, небольшая яхта и многотонный грузовой корабль.

И если человеческий мозг вполне способен понять, почему не тонут легкие судна, то плавание тяжелых грузовых судов можно объяснить, только зная законы физики.

Для того чтобы судно не тонуло в воде, а плавало в ней, необходимо, чтобы средняя плотность судна была значительно меньше плотности жидкости.

Для того чтобы судно перемещалось по водному пространству, оно должно быть частично погружено в нее. Соответственно, у корабля всегда есть и надводная и подводная части.

Осадка судна — это глубина, на которую погружается судно в воду.

Ватерлиния — это максимальная глубина, на которую судно может погрузиться в воду.

Водоизмещение — это общее количество воды, вытесняемое погруженной частью корабля и измеряется в килограммах, так как равно массе всего судна.

Какие физические законы оказывают влияние на корабль

Главный физический закон, оказывающий влияние на корабль в воде, — это закон Архимеда.

На тело, погруженное в жидкость или газ, действует выталкивающая его сила, численно равная весу жидкости или газа в объеме погруженной части тела.

Формула этой закономерности выглядит таким образом:

Особенности использования закона Архимеда

Человечеству знание закона Архимеда позволяет управлять объектами, находящимися в жидкости или газе:

Эти знания позволяют людям заниматься мореплаванием, воздухоплаванием, активно использовать морские и воздушные суда, подводные лодки. Все они функционируют в воде или воздухе по закону Архимеда.

Так, у подводных лодок есть специальные резервуары, которые в зависимости от ситуации заполняются воздухом или водой. Это необходимо, чтобы управлять лодкой и поднимать ее к поверхности или опускать на заданную глубину.

Жидкость и давление в ней

Жидкость — это одно из агрегатных состояний вещества, которое обладает текучестью и характеризуется сохранением объема.

По законам физики, любое тело, обладающее массой, производит давление на ту поверхность, на которой оно находится. В жидкости это проявляется гидростатическим давлением верхних слоев на нижние.

Математически эта закономерность выглядит таким образом:

Так как коэффициент свободного падения — величина постоянная, получается, что давление в жидкости зависит от глубины погружения в нее и от плотности самой жидкости.

Формула для условия плавания

На погруженное в воду судно действуют две физические силы:

Чтобы судно плавало на поверхности, нужно, чтобы выталкивающая сила Архимеда значительно превышала силу тяжести судна по своему значению.

— сила выталкивания, действующая на тело,

— сила тяжести

Сила Архимеда будет больше в том случае, когда плотность судна будет значительно меньше плотности воды:

Вычисление грузоподъемности корабля, примеры задач с кратким решением

Грузоподъемность судна — это максимально допустимый вес груза, которое оно может перевозить.

Грузоподъемность судна равна разности водоизмещения и веса самого судна.

Вычисляется по формуле:

Перед тем, как разобраться в процессе плавания тел, нужно понять, что такое сила.

В повседневной жизни мы часто встречаем, как любое тело деформируется (меняет форму или размер), ускоряется или тормозит, падает. В общем, чего только с разными телами в реальной жизни не происходит. Причина любого действия или взаимодействия — ее величество сила.

Она измеряется в Ньютонах — единице измерения, которую назвали в честь Исаака Ньютона.

Сила — величина векторная. Это значит, что, помимо модуля, у нее есть направление. От того, куда направлена сила, зависит результат.

Этот закон известен преимущественно не своей формулировкой, а историей его возникновения.

Легенда гласит, что царь Герон II попросил Архимеда определить, из чистого ли золота сделана его корона, при этом, не причиняя вреда самой короне. То есть, нельзя ее расплавить или в чем-нибудь растворить.

Взвесить корону Архимеду труда не составило, но этого было мало — нужно было определить объем короны, чтобы рассчитать плотность металла, из которого она отлита, и определить, чистое ли это золото.

Это можно сделать по формуле плотности.

Дальше, согласно легенде, Архимед, озабоченный мыслями о том, как определить объем короны, погрузился в ванну — и вдруг заметил, что уровень воды в ванне поднялся. И тут ученый осознал, что объем его тела вытеснил равный ему объем воды, следовательно, и корона, если ее опустить в заполненный до краев таз, вытеснит из него объем воды, равный ее объему.

Решение задачи было найдено и, согласно самой расхожей версии легенды, ученый закричал «Эврика!» и побежал докладывать о своей победе в царский дворец (по легенде он даже не оделся).

На поверхность твердого тела, погруженного в жидкость или газ, действуют силы давления. Эти силы увеличиваются с глубиной погружения, и на нижнюю часть тела будет действовать со стороны жидкости большая сила, чем на верхнюю.

Равнодействующая всех сил давления, действующих на поверхность тела со стороны жидкости, называется выталкивающей силой или силой Архимеда. Истинная причина появления выталкивающей силы — наличие различного гидростатического давления в разных точках жидкости.

FАрх = ρж * g * VпогрНа планете Земля: g = 9,8 м/с2

А теперь давайте порешаем задачки.

В сосуд погружены три железных шарика равных объемов. Одинаковы ли силы, выталкивающие шарики? (Плотность жидкости вследствие ничтожно малой сжимаемости на любой глубине считать примерно одинаковой).

На поверхности воды плавают бруски из дерева, пробки и льда. Укажите, какой брусок из пробки, а какой изо льда? Какая существует зависимость между плотностью тела и объемом этого тела над водой?

Чем меньше плотность тела, тем большая часть его находится над водой. Дерево плотнее пробки, а лед плотнее дерева. Значит изо льда — материал №1, а из пробки — №3.

На графике показана зависимость модуля силы Архимеда FАрх, действующей на медленно погружаемый в жидкость кубик, от глубины погружения x. Длина ребра кубика равна 10 см, его нижнее основание всё время параллельно поверхности жидкости. Определите плотность жидкости. Ускорение свободного падения принять равным 10 м/с2.

Сила Архимеда, действующая на кубик равна FАрх = ρж * g * Vпогр

V — объём погруженной части кубика,

ρ — плотность жидкости.

Учитывая, что нижнее основание кубика всё время параллельно поверхности жидкости, можем записать:

FАрх = ρж * g * Vпогр = ρж * g * a2 * x

ρ = FАрх / (g * a2 * x)

ρ = FАрх / (g * a2 * x) = 20,25 / (10 * 7,5 * 10-2) = 2700 кг/м3

Ответ: плотность жидкости равна 2700 кг/м3

В сосуде с водой, не касаясь стенок и дна, плавает деревянный кубик с длиной ребра 20 см. Кубик вынимают из воды, заменяют половину его объёма на материал, плотность которого в 6 раз больше плотности древесины, и помещают получившийся составной кубик обратно в сосуд с водой. На сколько увеличится модуль силы Архимеда, действующей на кубик? (Плотность сосны — 400 кг/м3.)

В первом случае кубик плавает в воде, а это значит, что сила тяжести уравновешивается силой Архимеда:

FАрх1 = mg = ρт * g * a3 = 400 * 0,23 * 10 = 32 Н

После замены части кубика его средняя плотность станет равной

0,5 * 400 + 0,5 * 2400 = 1400 кг/м3

Получившаяся плотность больше плотности воды = 100 кг/м3. Это значит, что во втором случае кубик полностью погрузится в воду. Сила Архимеда в этом случае будет равна:

FАрх2 = ρт * g * Vт = 1000 * 10 * 0,23 = 80 Н

Отсюда получаем, что сила Архимеда увеличится на 48 Н.

Ответ: сила Архимеда увеличится 48 Н

Курсы подготовки к ОГЭ по физике помогут снять стресс перед экзаменом и получить высокий балл.

Из закона Архимеда есть следствия об условиях плавания тел.

Почему корабли не тонут?Корабль сделан из металла, плотность которого больше плотности воды. И, по идее, он должен тонуть. Но дело в том, что корпус корабля заполнен воздухом, поэтому общая плотность судна оказывается меньше плотности воды, и сила Архимеда выталкивает его на поверхность. Если корабль получит пробоину, то пространство внутри заполнится водой — следовательно, общая плотность корабля увеличится. Судно утонет. В подводных лодках есть специальные резервуары, заполняемые водой или сжатым воздухом. Если нужно уйти на глубину — водой, если подняться — сжатым воздухом. Рыбы используют такой же принцип в плавательном пузыре — наполняют его воздухом, чтобы подняться наверх. Человеку, чтобы не утонуть, тоже достаточно набрать в легкие воздух и не двигаться — вода будет выталкивать тело на поверхность. Именно поэтому важно не тратить силы и кислород в легких на панику и борьбу, а расслабиться и позволить физическим законам сделать все за нас.

Разработки уроков (конспекты уроков)

Линия УМК А. В. Перышкина. Физика (7-9)

Внимание! Администрация сайта rosuchebnik.ru не несет ответственности за содержание методических разработок, а также за соответствие разработки ФГОС.

Цель урока: Выяснить условия плавания тел в зависимости от плотности жидкости и тела, усвоить их на уровне понимания и применения, с использованием логики научного познания.

Знать: Условия плавания тел.

Уметь: Экспериментально выяснять условия плавания тел.

Оборудование: таблица плотностей, исследуемые материалы, два сосуда (с водой и маслом), деревянный и пенопластовый, железный бруски, обернутые фольгой, картофелины, пластилин, нож.

Ход урока

Учитель: На предыдущих уроках мы рассмотрели действие жидкости и газа на погруженное в них тело, изучили закон Архимеда.

Учитель: Прежде, чем приступить к решению задач, ответим на несколько вопросов. Какая сила возникает при погружении тела в жидкость?

Учащиеся: Архимедова сила.

Учитель: Куда направлена эта сила?

Учащиеся: Она направлена вертикально вверх.

Учитель: Какие существуют способы для определения выталкивающей силы?

Учащиеся: Эксперимент, как на лабораторной работе. Сначала мы определили вес тела в воздухе, потом сняли показания динамометра с телом, полностью опущенным в воду. Разность показала нам значение выталкивающей силы.

Архимедову силу можно еще определить по формуле, не выполняя эксперимент.

Учитель: От чего зависит выталкивающая сила?

Учащиеся: Архимедова сила зависит от объёма тела и от плотности жидкости или газа, в которые погружено тело.

Учитель: А если тело не полностью погружено в жидкость, то как определяется архимедова сила?

Учащиеся: Тогда для подсчета архимедовой силы надо использовать формулу FA = ρжgV, где V – объем той части тела, которая погружена в жидкость.

Учитель: Давайте решим задачи, представленные на слайдах (Берем задания 2-6)


ЖИДКОСТИ КАК И ТВЕРДЫЕ ТЕЛА ПОДЧИНЯЮТСЯ НЕ ПОДЧИНЯЮТСЯ УСЛОВИЯМ ПЛАВАНИЯ ТЕЛ

ЖИДКОСТИ КАК И ТВЕРДЫЕ ТЕЛА ПОДЧИНЯЮТСЯ НЕ ПОДЧИНЯЮТСЯ УСЛОВИЯМ ПЛАВАНИЯ ТЕЛ

ЖИДКОСТИ КАК И ТВЕРДЫЕ ТЕЛА ПОДЧИНЯЮТСЯ НЕ ПОДЧИНЯЮТСЯ УСЛОВИЯМ ПЛАВАНИЯ ТЕЛ

ЖИДКОСТИ КАК И ТВЕРДЫЕ ТЕЛА ПОДЧИНЯЮТСЯ НЕ ПОДЧИНЯЮТСЯ УСЛОВИЯМ ПЛАВАНИЯ ТЕЛ

ЖИДКОСТИ КАК И ТВЕРДЫЕ ТЕЛА ПОДЧИНЯЮТСЯ НЕ ПОДЧИНЯЮТСЯ УСЛОВИЯМ ПЛАВАНИЯ ТЕЛ

Учитель: Итак, мы знаем, что на всякое тело, погруженное в жидкость, действует архимедова сила. А ещё, какая сила действует на любое тело?

Учитель: Изобразите на доске сосуд с телом и расставьте силы (В процессе беседы попросить расписать массу тела через объем тела и плотность тела. Выполняет задание ученик у доски).

Архимедова сила: Fa = ρжVпчт g

Сила тяжести: Fт= mтg = ρтVтg

Учитель: Формулы похожи, но есть и отличия. Проанализируем, чем отличаются эти формулы?

Ученики: в первой формуле плотность жидкости, а во второй – плотность тела

Учитель: а теперь продемонстрируем эксперимент: у меня в руках три бруска одинакового объема. Я бросаю их в сосуд с водой и что наблюдаем?

Ученики: одно тело утонуло, другое погрузилось в воду, а третье практически плавает на поверхности.

Учитель: на всех ли действует выталкивающая сила?

Учитель: а по величине какова эта сила?

Ученики: объем одинаков, жидкость одна и та же, но тела ведут себя по-разному, плавают по-разному

Учитель: значит, что мы сегодня будем изучать на уроке?

Ученики: когда тело плавает, а когда тонет

Учитель: Давайте сегодня на уроке вместе решим проблему: Выясним: Каковы условия плавания тел в жидкости.

Запишите в тетради тему урока – “Условия плавания тел”.

Учитель: Ребята, а вы знаете, какой учёный изучал плавание тел?

Учитель: Итак, на любое тело, погруженное в жидкость, действует выталкивающая сила или сила Архимеда направленная вертикально вверх, и сила тяжести, направленная вниз.

Давайте посмотрим на рисунок. Поведение тела зависит от соотношения этих сил. Возможны три случая: (Зарисовываем и записываем в тетрадь!)


ЖИДКОСТИ КАК И ТВЕРДЫЕ ТЕЛА ПОДЧИНЯЮТСЯ НЕ ПОДЧИНЯЮТСЯ УСЛОВИЯМ ПЛАВАНИЯ ТЕЛ

Итак, чем меньше плотность тела по сравнению с плотностью жидкости, тем меньшая часть тела погружена в жидкость.


ЖИДКОСТИ КАК И ТВЕРДЫЕ ТЕЛА ПОДЧИНЯЮТСЯ НЕ ПОДЧИНЯЮТСЯ УСЛОВИЯМ ПЛАВАНИЯ ТЕЛ

В тетради должны появится элементы конспекта в виде:


ЖИДКОСТИ КАК И ТВЕРДЫЕ ТЕЛА ПОДЧИНЯЮТСЯ НЕ ПОДЧИНЯЮТСЯ УСЛОВИЯМ ПЛАВАНИЯ ТЕЛ

Для того чтобы тело плавало, необходимо, чтобы действующая на него сила тяжести уравновешивалась архимедовой (выталкивающей) силой.

Запись в тетради!!!

2. Если ρвещества < ρжидкости, то тела всплывают на поверхность жидкости.

3. Если ρвещества = ρжидкости, то тело плавает.

Учитель: Теперь выясним, можно ли заставить плавать тела, которые в обычных условиях тонут в воде, например картофелину или пластилин. Посмотрим опыт. Бросим эти тела в воду. Что вы наблюдаете?

Ученики: Они тонут в воде.

Учитель: А в этом сосуде картофелина в воде плавает. В чем же дело?

Ученики: Чтобы заставить картофелину плавать, вы насыпали в воду больше соли.

Учитель: Что же произошло?

Ученики: У соленой воды увеличилась плотность, и она стала сильнее выталкивать картофелину. Плотность воды возросла, и архимедова сила стала больше.

Учитель: Правильно. А если соли не будет. Каким образом добиться, чтобы картофелина плавала в воде?

Ученики: Сделать из картофелины лодочку. Она имеет большой объем и поэтому плавает.

Учитель: Итак, чтобы заставить плавать обычно тонущие тела, можно изменить плотность жидкости или объем погруженной части тела. При этом изменяется и архимедова сила, действующая на тело.

Значит, условия тел можно сформулировать двумя способами: сравнивая архимедову силу и силу тяжести или сравнивая плотности жидкости и находящегося в ней вещества.

В судостроении используется тот факт, что путем изменения объема можно придать плавучесть практически любому телу.

А учитывается ли как-нибудь связь условий плавания тел с изменением плотности жидкости? Да, при переходе из моря в реку меняется глубина осадки судов.

Но подробнее мы поговорим об этом на следующих уроках.

Учитель: Мы говорили об условии плавания твёрдых тел в жидкости. А может ли одна жидкость плавать на поверхности другой?

Наблюдение всплытия масляного пятна, под действием выталкивающей силы воды.

Учитель: Снова вернёмся к таблице плотности веществ. Объясним, почему на воде образуется масляная плёнка.

Итак, проблема решена, значит, жидкости, как и твёрдые тела, подчиняются условиям плавания тел.

А теперь давайте посмотрим, как вы усвоили материал урока (использовать один из двух ресурсов, представленных ниже)


ЖИДКОСТИ КАК И ТВЕРДЫЕ ТЕЛА ПОДЧИНЯЮТСЯ НЕ ПОДЧИНЯЮТСЯ УСЛОВИЯМ ПЛАВАНИЯ ТЕЛ

ЖИДКОСТИ КАК И ТВЕРДЫЕ ТЕЛА ПОДЧИНЯЮТСЯ НЕ ПОДЧИНЯЮТСЯ УСЛОВИЯМ ПЛАВАНИЯ ТЕЛ

ЖИДКОСТИ КАК И ТВЕРДЫЕ ТЕЛА ПОДЧИНЯЮТСЯ НЕ ПОДЧИНЯЮТСЯ УСЛОВИЯМ ПЛАВАНИЯ ТЕЛ

Учитель: давайте познакомимся еще с одним изобретением людей — ареометром.

Ареометр — прибор для измерения плотности жидкостей и твёрдых тел, принцип работы которого основан на Законе Архимеда. Считается, что ареометр изобрела Гипатия.

Обычно представляет собой стеклянную трубку, нижняя часть которой при калибровке заполняется дробью или ртутью для достижения необходимой массы. В верхней, узкой части находится шкала, которая проградуирована в значениях плотности раствора или концентрации растворенного вещества. Плотность раствора равняется отношению массы ареометра к объёму, на который он погружается в жидкость. Соответственно, различают ареометры постоянного объёма и ареометры постоянной массы.


ЖИДКОСТИ КАК И ТВЕРДЫЕ ТЕЛА ПОДЧИНЯЮТСЯ НЕ ПОДЧИНЯЮТСЯ УСЛОВИЯМ ПЛАВАНИЯ ТЕЛ

Учитель: Теперь давайте подведем итоги. ( РЕФЛЕКСИЯ)

Итак, сегодня мы выяснили при каких условиях плавают тела. От чего зависит плавание тел? (проходим по записям на доске условия плавания тел).

Учитель: домашнее задание: параграф 52, упражнение 27+ тест


ЖИДКОСТИ КАК И ТВЕРДЫЕ ТЕЛА ПОДЧИНЯЮТСЯ НЕ ПОДЧИНЯЮТСЯ УСЛОВИЯМ ПЛАВАНИЯ ТЕЛ

ЖИДКОСТИ КАК И ТВЕРДЫЕ ТЕЛА ПОДЧИНЯЮТСЯ НЕ ПОДЧИНЯЮТСЯ УСЛОВИЯМ ПЛАВАНИЯ ТЕЛ

ЖИДКОСТИ КАК И ТВЕРДЫЕ ТЕЛА ПОДЧИНЯЮТСЯ НЕ ПОДЧИНЯЮТСЯ УСЛОВИЯМ ПЛАВАНИЯ ТЕЛ

ЖИДКОСТИ КАК И ТВЕРДЫЕ ТЕЛА ПОДЧИНЯЮТСЯ НЕ ПОДЧИНЯЮТСЯ УСЛОВИЯМ ПЛАВАНИЯ ТЕЛ

ЖИДКОСТИ КАК И ТВЕРДЫЕ ТЕЛА ПОДЧИНЯЮТСЯ НЕ ПОДЧИНЯЮТСЯ УСЛОВИЯМ ПЛАВАНИЯ ТЕЛ

Плавание тел в физике, теория и онлайн калькуляторы

Если тело находится в жидкости или газе, но на него действует выталкивающая сила, называемая силой Архимеда. Она возникает как результат того, что давление в жидкости (газе) увеличивается с погружением в глубину вещества. При этом сила гидростатического давления на тело в жидкости (газе) сверху вниз меньше, силы давления, направленной снизу вверх.

Сила Архимеда ($F_A)$ равна весу жидкости (газа) в объеме тела, находящегося в ней:

где $
ho $ – плотность жидкости (газа); $V$ – объем тела, находящийся в веществе; $g$ – ускорение свободного падения.

Сила Архимеда появляется только тогда, когда на жидкость (газ) действует сила тяжести. Так, в невесомости гидростатическое давление равно нулю соответственно, нет силы Архимеда.

И так, если тело погружено в жидкость, при этом оно находится в состоянии механического равновесия, то со стороны окружающей жидкости на тело действует выталкивающая сила (сила Архимеда). Данная сила направлена вверх. Она проходит через центр масс жидкости, вытесненной телом (обозначим эту точку буквой А). Точку А называют центром плавучести тела. Положением точки плавучести определяют равновесие и устойчивость плавающего тела.

Закон Архимеда дает разъяснение всех вопросов, связанных с плаванием тел. Допустим, что тело находится в жидкости и оно предоставлено самому себе. Если вес тела больше, чем вес жидкости, которую оно вытесняет, то тело тонет. Если вес тела равен весу вытесненной им жидкости, то тело находится в равновесии внутри этой жидкости в любой ее точке. Если вес тела меньше, чем вес вытесненной им жидкости, то тело всплывает, двигаясь к поверхности жидкости. Достигнув поверхности, тело плавает так, что его часть выступает над поверхностью жидкости. Плавающие тела, обладающие разными плотностями, имеют над поверхностью жидкости разные доли своего объема.

Если тело неоднородно, то формулируя условия плавания тела сравнивают его среднюю плотность и плотность жидкости.

В том случае, если тело плавает на границе нескольких жидкостей с разными плотностями, то сила Архимеда равна:

Закон Архимеда позволяет решать вопрос, связанный с равновесием тел в жидкости. Для равновесия необходимо, чтобы вес тела равнялся весу вытесненной им жидкости, при этом центр плавучести А должен находиться на одной вертикали с центром масс самого тела. При определении устойчивости равновесия выделяют два случая.