ТЭНГЕН УГЛА ОПРЕДЕЛЕНИЕ В ГЕОМЕТРИИ И ТРИГОНОМЕТРИЧЕСКИЕ ФУНКЦИИ

Запросы «sin» и «синус» перенаправляются сюда; у терминов sin и синус есть также другие значения.

Запрос «sec» перенаправляется сюда; см. также другие значения.

Рис. 1.Графики тригонометрических функций: , , , , ,

Раздел математики, изучающий свойства тригонометрических функций, называется тригонометрией.

К тригонометрическим функциям традиционно причисляют:

прямые тригонометрические функции:

производные тригонометрические функции:

обратные тригонометрические функции:

Кроме этих шести широко известных тригонометрических функций, иногда в литературе используются некоторые редко используемые тригонометрические функции (версинус и т. д.).

Синус и косинус вещественного аргумента представляют собой периодические, непрерывные и бесконечно дифференцируемые вещественнозначные функции. Остальные четыре функции на вещественной оси также вещественнозначны, периодичны и бесконечно дифференцируемы, за исключением счётного числа разрывов второго рода: у тангенса и секанса в точках , а у котангенса и косеканса — в точках .
Графики тригонометрических функций показаны на рис. 1.

Определение для любых углов

Рис. 2.Определение тригонометрических функций

Рис. 3.Численные значения тригонометрических функций угла в тригонометрической окружности с радиусом, равным единице

Синусом угла называется ордината точки единичной окружности, где получается поворотом на угол в положительном направлении (против часовой стрелки), если , и в отрицательном (по часовой стрелке), если .

Косинусом угла называется абсцисса точки единичной окружности, где получается поворотом на угол в положительном направлении (против часовой стрелки), если , и в отрицательном (по часовой стрелке), если .

Тангенсом угла называется отношение ординаты точки единичной окружности к её абсциссе, причём точка не принадлежит оси ординат.

Таким образом, определения тригонометрических функций выглядят следующим образом:

Нетрудно видеть, что такое определение также основывается на отношениях прямоугольного треугольника, с тем отличием, что учитывается знак (). Поэтому тригонометрические функции можно определить и по окружности произвольного радиуса , однако формулы придётся нормировать. На рисунке 3 показаны величины тригонометрических функций для единичной окружности.

В тригонометрии удобным оказывается вести счёт углов не в градусной мере, а в радианной. Так, угол в запишется длиной единичной окружности . Угол в равен, соответственно и так далее. Заметим, что угол на отличающийся от по рисунку эквивалентен , вследствие чего заключим, что тригонометрические функции периодичны.

Наконец, определим тригонометрические функции вещественного числа тригонометрическими функциями угла, радианная мера которого равна .

Определение для острых углов

Рис. 4.Тригонометрические функции острого угла

Определение тангенса. Марка СССР 1961 года

Данное определение имеет некоторое методическое преимущество, так как не требует введения понятия системы координат, но также и такой крупный недостаток, что невозможно определить тригонометрические функции даже для тупых углов, которые необходимо знать при решении элементарных задач о тупоугольных треугольниках. ( См.: теорема синусов, теорема косинусов).

Определение как решений дифференциальных уравнений

Синус и косинус можно определить как единственные функции, вторые производные которых равны самим функциям, взятым со знаком минус:

То есть задать их как чётное (косинус) и нечётное (синус) решения дифференциального уравнения

с дополнительными условиями:
для косинуса и для синуса.

Определение как решений функциональных уравнений

при дополнительных условиях:

и при .

Определение через ряды

Используя геометрию и свойства пределов, можно доказать, что производная синуса равна косинусу, и что производная косинуса равна минус синусу. Тогда можно воспользоваться теорией рядов Тейлора и представить синус и косинус в виде степенны́х рядов:

Пользуясь этими формулами, а также равенствами и можно найти разложения в ряд и других тригонометрических функций:

— числа Бернулли,
 — числа Эйлера.

Значения тригонометрических функций для некоторых углов

Значения синуса, косинуса, тангенса, котангенса, секанса и косеканса для некоторых углов приведены в таблице. («» означает, что функция в указанной точке не определена, а в её окрестности стремится к бесконечности).

Значения косинуса и синуса на окружности

Значения тригонометрических функций нестандартных углов

Значения тригонометрических функций для некоторых других углов

Свойства тригонометрических функций

Поскольку синус и косинус являются соответственно ординатой и абсциссой точки, соответствующей на единичной окружности углу , то согласно уравнению единичной окружности () или теореме Пифагора имеем для любого :

Это соотношение называется основным тригонометрическим тождеством.

Разделив это уравнение на квадрат косинуса и синуса соответственно, получим:

Из определения тангенса и котангенса следует, что

Любую тригонометрическую функцию можно выразить через любую другую тригонометрическую функцию с тем же аргументом (с точностью до знака из-за неоднозначности раскрытия квадратного корня). Нижеприведённые формулы верны для :

Косинус и секанс — чётные. Остальные четыре функции — нечётные, то есть:

Функции  — периодические с периодом , функции и  — c периодом .

Формулами приведения называются формулы следующего вида:

Здесь  — любая тригонометрическая функция,  — соответствующая ей кофункция (то есть косинус для синуса, синус для косинуса, тангенс для котангенса, котангенс для тангенса, секанс для косеканса и косеканс для секанса),  — целое число. Перед полученной функцией ставится тот знак, который имеет исходная функция в заданной координатной четверти при условии, что угол острый, например:

или что то же самое:

Некоторые формулы приведения:

Интересующие формулы приведения так же могут легко быть получены рассмотрением функций на единичной окружности.

Формулы сложения и вычитания

Значения тригонометрических функций суммы и разности двух углов:

Аналогичные формулы для суммы трёх углов:

Формулы для кратных углов

Формулы двойного угла:

Формулы тройного угла:

Прочие формулы для кратных углов:

следует из формулы дополнения и формулы Гаусса для гамма-функции.

Из формулы Муавра можно получить следующие общие выражения для кратных углов:

где  — целая часть числа ,  — биномиальный коэффициент.

Формулы половинного угла:

Формулы для произведений функций двух углов:

Аналогичные формулы для произведений синусов и косинусов трёх углов:

Формулы для произведений тангенсов и котангенсов трёх углов можно получить, поделив правые и левые части соответствующих равенств, представленных выше.

где угол находится из соотношений:

Универсальная тригонометрическая подстановка

Все тригонометрические функции можно выразить через тангенс половинного угла:

Исследование функций в математическом анализе

Тригонометрические функции могут быть представлены в виде бесконечного произведения многочленов:

Эти соотношения выполняются при любом значении .

Разложение тангенса в непрерывную дробь:

Производные и первообразные

Все тригонометрические функции непрерывно и неограниченно дифференцируемы на всей области определения:

Тригонометрические функции комплексного аргумента

Формула Эйлера позволяет определить тригонометрические функции от комплексных аргументов через экспоненту по аналогии с гиперболическими функциями, или (с помощью рядов) как аналитическое продолжение их вещественных аналогов:

Соответственно, для вещественного x:

Комплексные синус и косинус тесно связаны с гиперболическими функциями:

Большинство перечисленных выше свойств тригонометрических функций сохраняются и в комплексном случае. Некоторые дополнительные свойства:

На следующих графиках изображена комплексная плоскость, а значения функций выделены цветом. Яркость отражает абсолютное значение (чёрный — ноль). Цвет изменяется от аргумента и угла согласно карте.

Линия синуса (линия на рис. 2) у индийских математиков первоначально называлась «арха-джива» («полутетива», то есть половина хорды данной дуги, поскольку дуга с хордой напоминает лук с тетивой). Затем слово «арха» было отброшено и линию синуса стали называть просто «джива». Арабские математики, переводя индийские книги с санскрита, не перевели слово «джива» арабским словом «ватар», обозначающим тетиву и хорду, а транскрибировали его арабскими буквами и стали называть линию синуса «джиба» (‎). Так как в арабском языке краткие гласные не обозначаются, а долгое «и» в слове «джиба» обозначается так же, как полугласная «й», арабы стали произносить название линии синуса как «джайб», что буквально обозначает «впадина», «пазуха». При переводе арабских сочинений на латынь европейские переводчики перевели слово «джайб» латинским словом  — «синус», имеющим то же значение (именно в этом значении оно применяется как анатомический термин синус). Термин «косинус» (лат. ) — это сокращение от лат.  — дополнительный синус.

Современные краткие обозначения , введены Уильямом Отредом и Бонавентурой Кавальери и закреплены в трудах Леонарда Эйлера.

Термины «тангенс» (лат.  — касающийся) и «секанс» (лат.  — секущий) были введены датским математиком Томасом Финке в его книге «Геометрия круглого» (Geometria rotundi, 1583). Сам термин тригонометрические функции введён Клюгелем в 1770 году. В XVIII веке Ж. Лагранжем и другими математиками были введены и термины для обратных тригонометрических функций — арксинус, арккосинус, арктангенс, арккотангенс, арксеканс, арккосеканс — с помощью добавления приставки «арк» (от лат.  — дуга).

  • Бермант А. Ф., Люстерник Л. А. Тригонометрия. — М.: Наука, 1967.
  • Выгодский М. Я. Справочник по элементарной математике. — М.: Наука, 1978.
  • Кожеуров П. А. Тригонометрия. — М.: Физматгиз, 1963.
  • Маркушевич А. И. Замечательные синусы. — М.: Наука, 1974.

В системе координат построим полуокружность радиуса  с центром в начале координат.


ТЭНГЕН УГЛА ОПРЕДЕЛЕНИЕ В ГЕОМЕТРИИ И ТРИГОНОМЕТРИЧЕСКИЕ ФУНКЦИИ

Как уже известно, в прямоугольном треугольнике синус острого угла определяется как отношение противолежащего катета к гипотенузе, а косинус острого угла определяется как отношение прилежащего катета к гипотенузе.

В треугольнике (AOX):

Так как радиус полуокружности (R = AO = 1), то

Длина отрезка (AX) равна величине координаты (y) точки (A), а длина отрезка (OX) равна величине координаты (x) точки (A):

В прямоугольном треугольнике тангенс острого угла равен отношению противолежащего катета к прилежащему катету, а значит,

Используя единичную полуокружность и рассмотренную информацию, определим синус, косинус и тангенс для

Рассмотрим оба острых угла в треугольнике (AOX). Если вместе они образуют

, то оба выразим через


ТЭНГЕН УГЛА ОПРЕДЕЛЕНИЕ В ГЕОМЕТРИИ И ТРИГОНОМЕТРИЧЕСКИЕ ФУНКЦИИ

Видим, что справедливы равенства:

Рассмотрим тупой угол, который также выразим через


ТЭНГЕН УГЛА ОПРЕДЕЛЕНИЕ В ГЕОМЕТРИИ И ТРИГОНОМЕТРИЧЕСКИЕ ФУНКЦИИ

Справедливы следующие равенства:

Эти формулы называются формулами приведения:

Если в треугольнике (AOX) применить теорему Пифагора, получаем

. Заменив отрезки соответственно синусом и косинусом, мы напишем

лавное тригонометрическое тождество

Это тождество позволяет вычислить величину синуса угла, если дан косинус

(как уже отмечено, синус для углов

только или ):

— или величину косинуса угла, если дан синус:

Для острых углов косинус положительный, а для тупых углов берём отрицательное значение.

Что такое тангенс угла и как его найти

Живущим людям на Землевсегда хотелось знать,как путь найти в пустыне, море,и можно к звёздам ли попасть.

Хотелось труд свой облегчить,создать машины, чтоб летать. И чтоб вопросы разрешить,пришлось про тангенс всем узнать.

Здравствуйте, уважаемые читатели блога KtoNaNovenkogo.ru. Впервые встречаясь с тригонометрией в восьмом классе на геометрии, школьники оглядываются на свою жизнь, задавая вопрос, насколько пригодится им эта область науки в дальнейшем.


ТЭНГЕН УГЛА ОПРЕДЕЛЕНИЕ В ГЕОМЕТРИИ И ТРИГОНОМЕТРИЧЕСКИЕ ФУНКЦИИ

Редко кто задумывается, что раздел математики, позволяющий рассказать о заданном треугольнике всё (найти все его стороны и углы, выделить особенности), позволил в своё время сделать великие открытия.

Тригонометрия, дав возможность строить корабли и самолёты, отправлять человека в космос, создавать приборы для ориентирования на море, в лесу, в пустыне, определять расстояния, не измеряя их непосредственно линейкой, шагами или чем-то иным, помогла упростить жизнь человечества, раскрыть новые горизонты знаний.

Первые встречи с тангенсом происходят при изучении прямоугольных треугольников.

В них соотношения сторон, образующих прямой угол (катетов), и стороны, лежащей напротив угла в 90º (гипотенузы), задают важные параметры для изучения углов.

Для понимания связи между объектами рассматриваются отношения различных отрезков. Задавая связь между ними, вводят понятия синуса, косинуса (это что?), тангенса, котангенса.

Важно, что это отвлечённые понятия, не связанные с какими-либо единицами измерения.

Введя функции угла, определяют их свойства. Некоторые полученные формулы могут иметь довольно громоздкий вид. Чтобы избежать затруднённого чтения, вводятся другие объекты.

Так произошло и с тангенсом. Ему посчастливилось получить два определения. Каждое характеризует заданное отношение по-своему. С одной стороны, рассматривается связь между катетами и острыми углами прямоугольного треугольника, с другой – даётся возможность упростить формулы, содержащие синусы и косинусы.

Мало кто задумывается, изучая тангенс в школе, что первоначально он был необходим, чтобы найти касательные линии к заданной кривой. Само понятие возникло от латинского слова tangens, которое означает «трогающий», «касающийся» и является причастием настоящего времени от tangere («трогать», «касаться»).

Итак, есть два определения:

Вместо «тангенс угла альфа» пишут: tgα. На калькуляторах, в различных программах ЭВМ и ПК закрепилось другое обозначение: tan⁡(α).

Как найти тангенс угла (формулы)

Первое свойство тангенса вытекает из его определения как отношения катетов.

Сумма двух непрямых углов прямоугольного треугольника равна 90º. Поэтому

Так как тангенс – это отношение катетов, то

Учитывая особенности некоторых треугольников (равностороннего, прямоугольного, равнобедренного), а также записанное свойство, была составлена таблица значений тангенса для углов 30º, 45º, 60º.

Задача нахождения других углов по значению тангенса была решена с помощью составления более обширных таблиц. За счёт появления современных вычислительных средств необходимость применения табулированных значений уменьшилась.

Как найти тангенс по клеточкам

Учитывая первое определение, можно определить, как найти его по клеточкам. Рисунок дополняется перпендикулярными линиями (строится высота), затем считается количество клеточек в полученном прямоугольном треугольнике на катетах, противолежащем и прилежащем искомому углу, а затем берётся их отношение.

Благодаря второму определению, задачу, как найти тангенс угла, можно решить, минуя таблицы и построение прямоугольных треугольников. Достаточно знать синус и косинус, связанные между собой основным тригонометрическим тождеством:

Из формулы тангенсов, записывающей кратко второе определение

и основного тригонометрического тождества можно понять, как найти тангенс, зная только косинус или синус угла.