Видеоурок: закон Архимеда
Так как сила Архимеда обусловлена силой тяжести, то в невесомости она не действует.
У этого термина существуют и другие значения, см. Плавание.
Плавание — способность тела удерживаться на поверхности жидкости или на определённом уровне внутри жидкости или газа. Плавание тел объясняется законом Архимеда.
Гениальный учёный Архимед, живший в древнегреческих Сиракузах в III веке до нашей эры, прославился среди современников как создатель оборонительных машин, способных перевернуть боевой корабль. Другое его изобретение, «Архимедов винт», по сей день остаётся важнейшей деталью гигантских буровых установок и кухонных мясорубок. Мир обязан Архимеду революционными открытиями в области оптики, математики и механики.
Его личность окутана легендами, порой весьма забавными. С одной из них мы и начнём нашу статью.
Что это за величина
Прежде чем говорить о силе Архимеда, нужно понять, что это вообще такое — сила.
В повседневной жизни мы часто видим, как физические тела деформируются (меняют форму или размер), ускоряются и тормозят, падают. В общем, чего только с ними не происходит! Причина любых действий или взаимодействий тел — ее величество сила.
Сила — это физическая векторная величина, которая воздействует на данное тело со стороны других тел. Сила измеряется в ньютонах — единице измерения, которую назвали в честь Исаака Ньютона.
Поскольку сила — величина векторная, у нее, помимо модуля, есть направление. От того, куда направлена сила, зависит результат.
Вот стоите вы на лонгборде: можете оттолкнуться вправо, а можете влево — в зависимости от того, в какую сторону оттолкнетесь, результат будет разный. В этом случае результат выражается в направлении движения.
Домашний лицей для 5–11 классовЗанятия где и когда удобно, 10+ кружков на выбор, никакого стресса с домашками и нудных родительских собраний
Перед тем, как разобраться в процессе плавания тел, нужно понять, что такое сила.
В повседневной жизни мы часто встречаем, как любое тело деформируется (меняет форму или размер), ускоряется или тормозит, падает. В общем, чего только с разными телами в реальной жизни не происходит. Причина любого действия или взаимодействия — ее величество сила.
Она измеряется в Ньютонах — единице измерения, которую назвали в честь Исаака Ньютона.
Сила — величина векторная. Это значит, что, помимо модуля, у нее есть направление. От того, куда направлена сила, зависит результат.
Закон Архимеда. Условия плавания тел
Помимо силы тяжести, на тело, погруженное в жидкость, действует выталкивающая сила — архимедова сила. Жидкость оказывает давление на все части тела, но давление не одинаковое. Ведь нижний край корпуса больше погружен в жидкость, чем верхний, и давление увеличивается с глубиной. Это означает, что сила, действующая на нижнюю сторону корпуса, будет больше, чем сила, действующая на верхнюю сторону. Следовательно, создается сила, которая пытается вытолкнуть тело из жидкости.
Величина архимедовой силы зависит от плотности жидкости и объема той части тела, которая находится непосредственно в жидкости. Сила Архимеда действует не только в жидкостях, но и в газах.
Закон Архимеда: на тело, погруженное в жидкость или газ, действует выталкивающая сила, равная весу жидкости или газа в объеме тела.
Сила Архимеда, действующая на погруженное в жидкость тело, может быть рассчитана по формуле:
На тело внутри жидкости действуют две силы: сила тяжести и сила Архимеда. Под действием этих сил тело может двигаться. Для плавания тела существует три условия:
Закон Архимеда распространяется и на воздухоплавание. Первый воздушный шар был создан в 1783 году братьями Монгольфье. В 1852 году француз Жиффар создал дирижабль — управляемый аэростат с воздушным рулем и пропеллером.
Силы, действующие на погруженное в жидкость тело
Наблюдение. Почему сложно погрузить мяч в воду и почему он выпрыгивает из воды, как только мы его бросаем? Почему в море плавать легче, чем в озере? Почему мы можем поднять камень в воде, а не в воздухе?
Газы очень похожи на жидкости. Воспитательная сила также действует на тела, находящиеся в газе. Под действием этой силы воздушные шары, метеозонды и детские шары, наполненные водородом, поднимаются вверх. А от чего зависит выталкивающая сила?
Опыт 1. Два тела разного объема, но одинаковой массы, погрузим полностью в одну и ту же жидкость (воду). Мы видим, что тело большего объема выталкивается из жидкости (воды) с большей силой.
Выталкивающая сила зависит от объема погруженного в жидкость тела. Чем больше объем тела, тем большая выталкивающая сила действует на него.
Опыт 2. Два тела одинакового объема и массы полностью погружены в разные жидкости, например воду и керосин. Неуравновешенность в данном случае свидетельствует о том, что на тело в воде действует большая плавучесть, это можно объяснить тем, что плотность воды больше плотности керосина.
Выталкивающая сила зависит от плотности жидкости, в которую погружено тело. Чем больше плотность жидкости, тем большая выталкивающая сила действует на погруженное в нее тело.
Обобщая результаты наблюдений и опытов можно сделать следующий вывод.
На тело, погруженное в жидкость (газ), действует выталкивающая сила, равная по значению весу жидкости (газа), вытесненной этим телом.
Это утверждение называется законом Архимеда, древнегреческого ученого, который открыл его и, согласно легенде, успешно применил его для решения практической задачи: он определил, содержала ли золотая корона царя Гиерона примеси серебра. Сила, которая выталкивает тело из жидкости или газа, также называется силой Архимеда.
Основываясь на законе Архимеда, вы можете сразу написать формулу для определения силы плавучести, но чтобы лучше понять, почему она возникает, мы выполним несложные вычисления. Для этого рассмотрим тело в форме прямоугольного стержня, погруженного в жидкость так, чтобы его верхний и нижний края были параллельны поверхности жидкости.
Посмотрим, к чему приведет действие сжимающих сил на поверхность этого тела.
Согласно закону Паскаля горизонтальные силы F3 и F4, действующие на симметричные боковые поверхности стержня, попарно равны по величине и противоположно направлены. Стержни вверх не толкают, а только сжимают с боков. Обратите внимание на силы гидростатического давления на верхнем и нижнем крае стержня.
Доказательство существования архимедовой силы
Мы уже знаем, что сила Архимеда является результатом сил давления жидкости на все части тела. На рис. 1 схематически показаны силы, действующие на участки одной и той же площади для тела любой формы. По мере увеличения глубины эти силы увеличиваются, поэтому равнодействующая всех сжимающих сил направлена вверх.
Рис.1. К доказательству закона Архимеда для тела произвольной формы
Однако теперь мы заменяем тело, мысленно погруженное в жидкость, той же жидкостью, которая «затвердела» и сохранила свою плотность (рис. 1). На это «тело» будет действовать та же архимедова сила, что и на это тело: ведь поверхность этого «тела» совпадает с поверхностью выбранного объема жидкости, а сжимающие силы на разных участках поверхности остаются прежними.
Заданный объем жидкости, которая «плавает» внутри той же жидкости, находится в равновесии. Это означает, что гравитационная сила Ft и действующая на нее архимедова сила Fa уравновешены, поэтому они имеют одинаковый размер и направлены в противоположном направлении (рис. 1).
Для тела в состоянии покоя сила тяжести равна весу, а это означает, что сила Архимеда равна весу заданного объема жидкости. А это объем погруженной части тела: ведь мы мысленно заменили ее жидкостью.
Таким образом, мы доказали, что на тело любой формы действует архимедова сила, которая по абсолютной величине равна весу жидкости в объеме, занимаемом телом.
Это доказательство — пример мысленного эксперимента. Это популярный метод рассуждения многих ученых. Но выводы по результатам мысленного эксперимента должны быть проверены в реальном эксперименте. Поэтому мы проверим закон Архимеда на опыте.
Навесим на пружину пустое ведро (так называемое ведро Архимеда) и на него небольшой камень любой формы (рис. 2, а). Обратите внимание на удлинение пружины и замените емкость под камнем, в которую налита вода до уровня сливной трубы (рис. 2, б). Когда камень полностью погружен в воду, вытесняющая его вода сливается через сливную трубу в стакан. Мы заметим, что удлинение пружины уменьшилось из-за плавучести.
Рис. 2. Опыт показывает, что сила Архимеда равна весу воды, вытесненной телом
Теперь давайте выльем воду, которую камень вытолкнул из стакана, в ведро Архимеда — это только увеличивает вес камня за счет веса воды, вытолкнувшей его. И мы увидим, что удлинение пружины такое же, как и до погружения камня в воду (рис. 2, в). Это означает, что сила Архимеда действительно равна весу воды, которую вытолкнул камень.
Равновесие тел в жидкости
Гравитационное поле Земли создает гидростатическое давление, которое приводит к существованию статической подъемной силы, действующей на тела, погруженные в жидкость. Закон, определяющий величину силы плавучести, был открыт Архимедом: данная сила (сила Архимеда (Fa)) равна весу жидкости, объем которой равен объему погруженной в нее части тела:
где ρ — плотность жидкости (газа); V — объем тела, находящийся в веществе; g — ускорение свободного падения.
Сила Архимеда проявляется только при наличии силы тяжести. Таким образом, в условиях невесомости гидростатическое давление равно нулю, что означает Fa = 0.
Сила Архимеда направлена вверх. Он проходит через центр масс вытесняемой телом жидкости (эта точка обозначается буквой С). Точка C называется центром возвышения тела. Положение точки плавучести определяет баланс и устойчивость тела плавучести.
Условия плавания тела в жидкости.
Закон Архимеда позволяет нам объяснить проблемы, связанные с парением тел. Представьте себе тело, которое помещено в жидкость и предоставлено самому себе. Тело тонет, когда его вес превышает вес вытесняемой им жидкости. Когда вес тела и вес жидкости, которую оно перемещает, одинаковы, тело находится в равновесии в жидкости.
Тело плавает и перемещается к поверхности жидкости, если вес жидкости, выталкиваемой телом, превышает вес тела. Когда он поднимается на поверхность жидкости, тело плавает. В этом случае деталь может выступать над поверхностью жидкости.
Условия плавания тел в жидкости для однородных тел (плотность вещества тела ρ=const) определяют следующим образом:
Для неоднородных тел используют понятие средней плотности, при этом среднюю плотность тела сравнивают с плотностью жидкости.
При рассмотрении движения тела на границе жидкостей имеющих разные плотности, учитывают, что сила Архимеда равна:
ρ1 — плотность первой жидкости; ρ2 — плотность второй жидкости; V1 — объем части тела, находящийся в первой жидкости; V2 — объем этого же тела, находящийся во второй жидкости.
Равновесие тел в жидкости
Если средняя плотность тела меньше плотности жидкости, часть тела будет выступать над поверхностью. Для плавучих сооружений очень важно понятие устойчивости плавания. При определении устойчивости баланса тела случаи делятся:
Если тело полностью находится в жидкости и плавает в ней (средняя плотность тела равна плотности жидкости), то для возможных поворотов и движений центр тяжести тела и центр плавучести не меняют свое положение относительно тела. Равновесие устойчиво, если центр тяжести тела находится ниже центра плавучести.
Если бы тело и жидкость были абсолютно несжимаемыми (или их сжимаемость была бы одинаковой), баланс тела был бы безразличен. Но на самом деле твердые тела, как правило, имеют меньшую сжимаемость, чем жидкости. Корпуса из таких материалов равномерно плавают в жидкостях одинаковой плотности.
Гораздо более сложный случай, когда тело не полностью находится в жидкости, когда деталь выступает над свободной поверхностью жидкости. В этом случае перемещение тела из положения равновесия вызывает изменение формы объема жидкости, которую тело вытесняет. Происходит изменение положения центра плавучести относительно тела.
Устойчивость равновесия такого тела определяется представлением о метацентре плавающего тела. Это точка, назовем ее M, которая получается на пересечении вертикальной оси симметрии тела и линии действия силы плавучести. Если метацентр расположен выше центра масс тела, то момент силы плавучести пытается вернуть тело в равновесие, а значит, тело плавает равномерно.
Примеры задач на плавание тел
статья в Энциклопедическом словаре Брокгауза и Ефрона
«Эврика!» Открытие закона Архимеда
Однажды царь Сиракуз Гиерон II обратился к Архимеду с просьбой установить, действительно ли его корона выполнена из чистого золота, как утверждал ювелир. Правитель подозревал, что мастер прикарманил часть драгоценного металла и частично заменил его серебром.
В те времена не существовало способов определить химический состав металлического сплава. Задача поставила учёного в тупик. Размышляя над ней, он отправился в баню и лёг в ванну, до краёв наполненную водой. Когда часть воды вылилась наружу, на Архимеда снизошло озарение. Такое, что учёный голышом выскочил на улицу и закричал «Эврика!», что по-древнегречески означает «Нашёл!».
Он предположил, что вес вытесненной воды был равен весу его тела, и оказался прав. Явившись к царю, он попросил принести золотой слиток, равный по весу короне, и опустить оба предмета в наполненные до краёв резервуары с водой. Корона вытеснила больше воды, чем слиток. При одной и той же массе объём короны оказался больше, чем объём слитка, а значит, она обладала меньшей плотностью, чем золото. Выходит, царь правильно подозревал своего ювелира.
Так был открыт принцип, который теперь мы называем законом Архимеда:
На тело, погружённое в жидкость или газ, действует выталкивающая сила, равная весу жидкости или газа в объёме погружённой части тела.
Эта выталкивающая сила и называется силой Архимеда.
Когда сила Архимеда не работает
На самом деле тут все очень похоже на жидкости. Начнем с формулировки закона Архимеда:
Выталкивающая сила, действующая на тело, погруженное в газ, равна по модулю весу вытесненного газа и противоположно ему направлена.
Формула архимедовой силы для газов
FАрх = ρгgVпогрНа планете Земля g = 9,8 м/с 2.
Сила Архимеда для газов действует аналогично архимедовой силе для жидкостей. Давайте убедимся в этом, решив задачку.
Задача
Груз какой максимальной массы может удерживать воздушный шар с гелием объема 0,3 м3, находясь в атмосфере Земли? Плотность воздуха равна 1,3 кг/м 3. Гелий считать невесомым.
Подставляем значения и получаем:
FАрх = ρгgVпогр = 1,3 × 10 × 0,3 = 0,39 Н
По второму закону Ньютона для инерциальных систем отсчета:
FАрх = mg
Выражаем массу груза и подставляем значения:
m = FАрх / g = 0,39 / 10 = 0, 039 кг = 39 кг
Ответ: груз максимальной массы 39 г может удержать данный шарик с гелием.
Формула и определение силы Архимеда для жидкости
На поверхность твердого тела, погруженного в жидкость, действуют силы давления. Эти силы увеличиваются с глубиной погружения, и на нижнюю часть тела будет действовать со стороны жидкости большая сила, чем на верхнюю.
Равнодействующая всех сил давления, действующих на поверхность тела со стороны жидкости, называется выталкивающей силой или силой Архимеда. Истинная причина появления выталкивающей силы — наличие различного гидростатического давления в разных точках жидкости.
Определение архимедовой силы для жидкостей звучит так:
Выталкивающая сила, действующая на тело, погруженное в жидкость, равна по модулю весу вытесненной жидкости и противоположно ему направлена.
Формула архимедовой силы для жидкости
FАрх = ρжgVпогрНа планете Земля g = 9,8 м/с 2.
А теперь давайте порешаем задачки, чтобы закрепить, как вычислить архимедову силу.
Задача 1
В сосуд погружены три железных шарика равных объемов. Одинаковы ли силы, выталкивающие шарики? Плотность жидкости вследствие ничтожно малой сжимаемости на любой глубине считать примерно одинаковой.
Да, так как объемы одинаковы, а архимедова сила зависит от объема погруженной части тела, а не от глубины.
Задача 2
На графике показана зависимость модуля силы Архимеда FАрх, действующей на медленно погружаемый в жидкость кубик, от глубины погружения x. Длина ребра кубика равна 10 см, его нижнее основание все время параллельно поверхности жидкости. Определите плотность жидкости. Ускорение свободного падения принять равным 10 м/с2.
Сила Архимеда, действующая на кубик, равна FАрх = ρжgVпогр.
Vпогр. — объем погруженной части кубика,
ρж — плотность жидкости.
Учитывая, что нижнее основание кубика все время параллельно поверхности жидкости, можем записать:
FАрх = ρжgV погр = ρжga 2x
где а — длина стороны кубика.
ρ = FАрх / ga2x
Рассматривая любую точку данного графика, получим:
ρ = FАрхga2x = 20,25 / 10 × 7,5 × 10-2 = 2700 кг/м3
Ответ: плотность жидкости равна 2700 кг/м 3.
Из закона Архимеда вытекают следствия об условиях плавания тел.
Почему корабли не тонут?Корабль сделан из металла, плотность которого больше плотности воды. И, по идее, он должен тонуть. Но дело в том, что корпус корабля заполнен воздухом, поэтому общая плотность судна оказывается меньше плотности воды, и сила Архимеда выталкивает его на поверхность. Если корабль получит пробоину, то пространство внутри заполнится водой — следовательно, общая плотность корабля увеличится. Судно утонет.
В подводных лодках есть специальные резервуары, которые заполняют водой или сжатым воздухом. Если нужно уйти на глубину — водой, если подняться — сжатым воздухом. Рыбы используют такой же принцип в плавательном пузыре — наполняют его воздухом, чтобы подняться наверх.
Человеку, чтобы не утонуть, тоже достаточно набрать в легкие воздух и не двигаться — вода будет выталкивать тело на поверхность. Именно поэтому важно не тратить силы и кислород в легких на панику и борьбу, а расслабиться и позволить физическим законам сделать все за нас.
Условие плавания тел
Поведение тела, находящегося в жидкости или газе, зависит от соотношения между модулями силы тяжести и силы Архимеда , которые действуют на это тело. Возможны следующие три случая:
Другая формулировка (где — плотность тела, — плотность среды, в которую тело погружено):
Некий аналог закона Архимеда справедлив также в любом поле сил, которое по-разному действуют на тело и на жидкость (газ), либо в неоднородном поле. Например, это относится к полю сил инерции (например, к полю центробежной силы) — на этом основано центрифугирование. Пример для поля немеханической природы: диамагнетик в вакууме вытесняется из области магнитного поля большей интенсивности в область с меньшей.
Выталкивающая или подъёмная сила по направлению противоположна силе тяжести, прикладывается к центру тяжести объёма, вытесняемого телом из жидкости или газа.
Если тело плавает (см. плавание тел) или равномерно движется вверх или вниз, то выталкивающая или подъёмная сила по модулю равна силе тяжести, действующей на вытесненный телом объём жидкости или газа.
Плавание тела. Сила Архимеда () уравновешивает вес тела (): =
Например, воздушный шарик объёмом , наполненный гелием, летит вверх из-за того, что плотность гелия () меньше плотности воздуха ():
Закон Архимеда можно объяснить при помощи разности гидростатических давлений на примере прямоугольного тела, погруженного в жидкость или газ. В силу симметрии прямоугольного тела, силы давления, действующие на боковые грани тела, уравновешиваются. Давление () и сила давления (), действующие на верхнюю грань тела, равны:
Давление () и сила давления (), действующие на нижнюю грань тела, равны:
Сила давления жидкости или газа на тело определяется разностью сил и :
В отсутствие гравитационного поля, то есть в состоянии невесомости, закон Архимеда не работает. Космонавты с этим явлением знакомы достаточно хорошо. В частности, в невесомости отсутствует явление (естественной) конвекции, поэтому, например, воздушное охлаждение и вентиляцию жилых отсеков космических аппаратов необходимо производить принудительно вентиляторами.
Тело, помещённое в воду, плавает, если сила Архимеда уравновешивает силу тяжести тела.
Другая формулировка (где — плотность тела, — плотность среды, в которую оно погружено):
Так вышло, что закон Архимеда известен не столько своей формулировкой, сколько историей возникновения.
Легенда гласит, что царь Герон II попросил Архимеда определить, из чистого ли золота сделана его корона, при этом не причиняя вреда самой короне. То есть расплавить корону или растворить — нельзя.
Взвесить корону Архимеду труда не составило, но этого было мало — нужно ведь определить объем короны, чтобы рассчитать плотность металла, из которого она отлита.
Рассчитать плотность металла, чтобы установить, золотая ли корона, можно по формуле плотности.
Формула плотности телаρ = m/V
Дальше, согласно легенде, Архимед, озабоченный мыслями о том, как определить объем короны, погрузился в ванну — и вдруг заметил, что уровень воды в ванне поднялся. Тут ученый осознал, что объем его тела вытеснил равный ему объем воды, следовательно, и корона, если ее опустить в заполненный до краев таз, вытеснит из него объем воды, равный ее объему.
Решение задачи было найдено и, согласно самой расхожей версии легенды, ученый закричал «Эврика!» и побежал докладывать о своей победе в царский дворец (и так торопился, что даже не оделся). 🤦🏻♂️
Попробуйте онлайн-курс подготовки к ЕГЭ по физике с опытным преподавателем в Skysmart!
Выберите идеального репетитора по физике15 000+ проверенных преподавателей со средним рейтингом 4,8. Учтём ваш график и цель обучения
Формула силы Архимеда
На любой объект, погружённый в воду, действует выталкивающая сила, равная весу вытесненной им жидкости. Таким образом, вес объекта, погружённого в воду, будет отличаться от его веса в воздухе в меньшую сторону. Разница будет равна весу вытесненной воды.
Чем больше плотность среды — тем меньше вес. Именно поэтому погрузившись в воду, мы можем легко поднять другого человека.
Выталкивающая сила зависит от трёх факторов:
Сопоставив эти данные, получаем формулу:
Архимедова сила не работает лишь в трех случаях:
Как действует сила Архимеда
Поскольку сила Архимеда, действующая на тело, зависит от объёма его погружённой части и плотности среды, в которой оно находится, можно рассчитать, как поведёт себя то или иное тело в определённой жидкости или газе.
Если плотность тела меньше плотности жидкости или газа — оно будет плавать на поверхности.
Если плотности тела и жидкости или газа равны — тело будет находиться в безразличном равновесии в толще жидкости или газа.
Если плотность тела больше, чем плотность жидкости или газа, — оно уйдёт на дно.
Сила Архимеда в жидкости
Корпус корабля заполнен воздухом, поэтому общая плотность судна оказывается меньше плотности воды, и сила Архимеда выталкивает его на поверхность. Но если корабль получит пробоину и пространство внутри заполнится водой, то общая плотность судна увеличится, и оно утонет.
В подводных лодках существуют специальные резервуары, заполняемые водой или сжатым воздухом в зависимости от того, нужно ли уйти на глубину или подняться ближе к поверхности. Тот же самый принцип используют рыбы, наполняя воздухом специальный орган — плавательный пузырь.
На тело, плотно прилегающее ко дну, выталкивающая сила не действует. Это учитывают при подъёме затонувших кораблей. Сначала судно слегка приподнимают, позволяя воде проникнуть под него. Тогда давление воды начинает действовать на корабль снизу.
Но чтобы поднять корабль на поверхность, необходимо уменьшить его плотность. Разумеется, воздух в получившем пробоину корпусе не удержится. Поэтому его заполняют каким-нибудь лёгким веществом, например, шариками пенополистирола.
Примечательно, что эта идея впервые пришла в голову не учёным, а авторам диснеевского комикса, в котором Дональд Дак таким образом поднимает со дна яхту Скруджа Макдака. Датский инженер Карл Кройер (Karl Krøyer), впервые применивший метод на практике, по собственному признанию вдохновлялся «Утиными историями».
Почему летают дирижабли
В воздухе архимедова сила действует так же, как в жидкости. Но поскольку плотность воздуха обычно намного меньше, чем плотность окружённых им предметов, выталкивающая сила оказывается ничтожно мала.
Впрочем, есть исключения. Воздушный шарик, наполненный гелием, стремится вверх именно потому, что плотность гелия ниже, чем плотность воздуха. А если наполнить шар обычным воздухом — он упадёт на землю. Плотность воздуха в нём будет такая же, как у воздуха снаружи, но более высокая плотность резины обеспечит падение шарика.
Этот принцип используется в аэростатах — воздушные шары и дирижабли наполняют гелием или горячим воздухом (чем горячее воздух, тем ниже его плотность), чтобы подняться, и снижают концентрацию гелия (или температуру воздуха), чтобы спуститься. На них действует та же выталкивающая сила, что и на подводные лодки. Именно поэтому перемещения на аэростатах называют воздухоплаванием.
Учите физику вместе с домашней онлайн-школой «Фоксфорда»! По промокоду PHYSICS72021 вы получите бесплатный доступ к курсу физики 7 класса, в котором изучается архимедова сила.
Этот закон известен преимущественно не своей формулировкой, а историей его возникновения.
Легенда гласит, что царь Герон II попросил Архимеда определить, из чистого ли золота сделана его корона, при этом, не причиняя вреда самой короне. То есть, нельзя ее расплавить или в чем-нибудь растворить.
Взвесить корону Архимеду труда не составило, но этого было мало — нужно было определить объем короны, чтобы рассчитать плотность металла, из которого она отлита, и определить, чистое ли это золото.
Это можно сделать по формуле плотности.
Дальше, согласно легенде, Архимед, озабоченный мыслями о том, как определить объем короны, погрузился в ванну — и вдруг заметил, что уровень воды в ванне поднялся. И тут ученый осознал, что объем его тела вытеснил равный ему объем воды, следовательно, и корона, если ее опустить в заполненный до краев таз, вытеснит из него объем воды, равный ее объему.
Решение задачи было найдено и, согласно самой расхожей версии легенды, ученый закричал «Эврика!» и побежал докладывать о своей победе в царский дворец (по легенде он даже не оделся).
На поверхность твердого тела, погруженного в жидкость или газ, действуют силы давления. Эти силы увеличиваются с глубиной погружения, и на нижнюю часть тела будет действовать со стороны жидкости большая сила, чем на верхнюю.
Равнодействующая всех сил давления, действующих на поверхность тела со стороны жидкости, называется выталкивающей силой или силой Архимеда. Истинная причина появления выталкивающей силы — наличие различного гидростатического давления в разных точках жидкости.
FАрх = ρж * g * VпогрНа планете Земля: g = 9,8 м/с2
А теперь давайте порешаем задачки.
В сосуд погружены три железных шарика равных объемов. Одинаковы ли силы, выталкивающие шарики? (Плотность жидкости вследствие ничтожно малой сжимаемости на любой глубине считать примерно одинаковой).
На поверхности воды плавают бруски из дерева, пробки и льда. Укажите, какой брусок из пробки, а какой изо льда? Какая существует зависимость между плотностью тела и объемом этого тела над водой?
Чем меньше плотность тела, тем большая часть его находится над водой. Дерево плотнее пробки, а лед плотнее дерева. Значит изо льда — материал №1, а из пробки — №3.
На графике показана зависимость модуля силы Архимеда FАрх, действующей на медленно погружаемый в жидкость кубик, от глубины погружения x. Длина ребра кубика равна 10 см, его нижнее основание всё время параллельно поверхности жидкости. Определите плотность жидкости. Ускорение свободного падения принять равным 10 м/с2.
Сила Архимеда, действующая на кубик равна FАрх = ρж * g * Vпогр
V — объём погруженной части кубика,
ρ — плотность жидкости.
Учитывая, что нижнее основание кубика всё время параллельно поверхности жидкости, можем записать:
FАрх = ρж * g * Vпогр = ρж * g * a2 * x
ρ = FАрх / (g * a2 * x)
ρ = FАрх / (g * a2 * x) = 20,25 / (10 * 7,5 * 10-2) = 2700 кг/м3
Ответ: плотность жидкости равна 2700 кг/м3
В сосуде с водой, не касаясь стенок и дна, плавает деревянный кубик с длиной ребра 20 см. Кубик вынимают из воды, заменяют половину его объёма на материал, плотность которого в 6 раз больше плотности древесины, и помещают получившийся составной кубик обратно в сосуд с водой. На сколько увеличится модуль силы Архимеда, действующей на кубик? (Плотность сосны — 400 кг/м3.)
В первом случае кубик плавает в воде, а это значит, что сила тяжести уравновешивается силой Архимеда:
FАрх1 = mg = ρт * g * a3 = 400 * 0,23 * 10 = 32 Н
После замены части кубика его средняя плотность станет равной
0,5 * 400 + 0,5 * 2400 = 1400 кг/м3
Получившаяся плотность больше плотности воды = 100 кг/м3. Это значит, что во втором случае кубик полностью погрузится в воду. Сила Архимеда в этом случае будет равна:
FАрх2 = ρт * g * Vт = 1000 * 10 * 0,23 = 80 Н
Отсюда получаем, что сила Архимеда увеличится на 48 Н.
Ответ: сила Архимеда увеличится 48 Н
Курсы подготовки к ОГЭ по физике помогут снять стресс перед экзаменом и получить высокий балл.
Из закона Архимеда есть следствия об условиях плавания тел.
Почему корабли не тонут?Корабль сделан из металла, плотность которого больше плотности воды. И, по идее, он должен тонуть. Но дело в том, что корпус корабля заполнен воздухом, поэтому общая плотность судна оказывается меньше плотности воды, и сила Архимеда выталкивает его на поверхность. Если корабль получит пробоину, то пространство внутри заполнится водой — следовательно, общая плотность корабля увеличится. Судно утонет. В подводных лодках есть специальные резервуары, заполняемые водой или сжатым воздухом. Если нужно уйти на глубину — водой, если подняться — сжатым воздухом. Рыбы используют такой же принцип в плавательном пузыре — наполняют его воздухом, чтобы подняться наверх. Человеку, чтобы не утонуть, тоже достаточно набрать в легкие воздух и не двигаться — вода будет выталкивать тело на поверхность. Именно поэтому важно не тратить силы и кислород в легких на панику и борьбу, а расслабиться и позволить физическим законам сделать все за нас.
Силы, действующие на частично погруженное тело.
При этом сила выталкивания, по природе сила давления, зависит от плотности жидкости (ρfluid), а вес (Gravity) от плотности тела (ρobject). Обе силы являются равнодействующими распределённых нагрузок.
где — плотность жидкости (газа), — ускорение свободного падения, а — объём погружённого тела (или часть объёма тела, находящаяся ниже поверхности). Если тело плавает на поверхности (равномерно движется вверх или вниз), то выталкивающая сила (называемая также архимедовой силой) равна по модулю (и противоположна по направлению) силе тяжести, действовавшей на вытесненный телом объём жидкости (газа), и приложена к центру тяжести этого объёма.
Считают, что Архимед вывел этот закон, решая задачу определения плотности тела, не прибегая к объёмам. По легенде, ему требовалось узнать, из золота ли сделана корона, весившая столько же, сколько золотой слиток. Прямо измерить объём короны он не мог из-за её сложной формы.
Вывод закона Архимеда для тела произвольной формы
Гидростатическое давление на глубине , оказываемое жидкостью с плотностью на тело, есть . Пусть плотность жидкости () и напряжённость гравитационного поля () — постоянные величины, а — параметр. Возьмём тело произвольной формы, имеющее ненулевой объём. Введём правую ортонормированную систему координат , причём выберем направление оси совпадающим с направлением вектора . Ноль по оси установим на поверхности жидкости. Выделим на поверхности тела элементарную площадку . На неё будет действовать сила давления жидкости, направленная внутрь тела, . Чтобы получить силу, которая будет действовать на тело, возьмём интеграл по поверхности:
При переходе от интеграла по поверхности к интегралу по объёму пользуемся обобщённой теоремой Остроградского-Гаусса.
Получаем, что модуль силы Архимеда равен , и направлена сила Архимеда в сторону, противоположную направлению вектора напряжённости гравитационного поля.
Вывод через закон сохранения энергии
Закон Архимеда можно также вывести из закона сохранения энергии. Работа силы, действующей со стороны погружённого тела на жидкость, приводит к изменению её потенциальной энергии:
где — масса вытесненной части жидкости, — перемещение её центра масс. Отсюда модуль вытесняющей силы:
По третьему закону Ньютона эта сила, равна по модулю и противоположна по направлению силе Архимеда, действующей со стороны жидкости на тело. Объём вытесненной жидкости равен объёму погруженной части тела, поэтому массу вытесненной жидкости можно записать как:
где — объем погружённой части тела.