У многоклеточных животных в составе онтогенеза принято различать фазы эмбрионального (под покровом яйцевых оболочек) и постэмбрионального (за пределами яйца) развития.
Термин «онтогенез» впервые был введён Э. Геккелем в 1866 году. В ходе онтогенеза происходит процесс реализации генетической информации, полученной от родителей.
Раздел современной биологии, изучающий онтогенез, называется биологией развития; начальные этапы онтогенеза — эмбриогенез — изучаются также эмбриологией.
Сравнение зародышей позвоночных на разных стадиях эмбрионального развития. Иллюстрация из работы Эрнста Геккеля, на которой демонстрируется теория рекапитуляции (повторения филогенеза в онтогенезе). Некоторые зародыши даны с искажениями, чтобы казаться более похожими на остальных. Тем не менее, зародыши обычно действительно представляются более сходными между собой, чем взрослые организмы, что было отмечено эмбриологами ещё до возникновения теории эволюции
Различают личиночный, или непрямой, тип онтогенеза, характерный для многих видов беспозвоночных и некоторых позвоночных животных (рыбы, земноводные). Обусловлен относительно малыми запасами желтка в яйцах этих животных, а также необходимостью смены среды обитания в ходе развития либо необходимостью расселения видов, ведущих малоподвижный или паразитический образ жизни.
Неличиночный (яйцекладный) — у ряда беспозвоночных, а также у рыб, пресмыкающихся, птиц и некоторых млекопитающих, яйца которых богаты желтком. Зародыш длительное время развивается внутри яйца.
Онтогенез делится на два периода:
В эмбриональном периоде, как правило, выделяют следующие этапы: дробление, гаструляцию и органогенез.
Эмбриональный, или зародышевый, период онтогенеза начинается с момента оплодотворения и продолжается до выхода зародыша из яйцевых оболочек. У большинства позвоночных он включает стадии (фазы): дробления, гаструляции, гисто- и органогенеза.
Дробление — ряд последовательных митотических делений оплодотворённого или инициированного к развитию яйца. Дробление представляет собой первый период эмбрионального развития, который присутствует в онтогенезе всех многоклеточных животных и приводит к образованию зародыша, называемого бластулой (зародыш однослойный). При этом масса зародыша и его объём не меняются, то есть они остаются такими же, как у зиготы, а яйцо разделяется на все более мелкие клетки — бластомеры. После каждого деления дробления клетки зародыша становятся всё более мелкими, то есть меняются ядерно-плазменные отношения: ядро остаётся таким же, а объём цитоплазмы уменьшается. Процесс протекает до тех пор, пока эти показатели не достигнут значений, характерных для соматических клеток. Тип дробления зависит от количества желтка и его расположения в яйце.
Если желтка мало и он равномерно распределён в цитоплазме (изолецитальные яйца: иглокожие, плоские черви, млекопитающие), то дробление протекает по типу полного равномерного: бластомеры одинаковы по размерам, дробится всё яйцо.
Если желток распределён неравномерно (телолецитальные яйца: амфибии), то дробление протекает по типу полного неравномерного: бластомеры — разной величины, те, которые содержат желток — крупнее, яйцо дробится целиком.
При неполном дроблении желтка в яйцах настолько много, что борозды дробления не могут разделить его целиком. Дробление яйца, у которого дробится только сконцентрированная на анимальном полюсе «шапочка» цитоплазмы, где находится ядро зиготы, называется неполным дискоидальным (телолецитальные яйца: пресмыкающиеся, птицы).
При неполном поверхностном дроблении в глубине желтка происходят первые синхронные ядерные деления, не сопровождающиеся образованием межклеточных границ. Ядра, окружённые небольшим количеством цитоплазмы, равномерно распределяются в желтке. Когда их становится достаточно много, они мигрируют в цитоплазму, где затем после образования межклеточных границ возникает бластодерма (центролецитальные яйца: насекомые).
Один из механизмов гаструляции — инвагинация (впячивание части стенки бластулы внутрь зародыша). 1 — бластула, 2 — гаструла
Гаструляция — гаструла формируется в результате инвагинации клеток. В ходе гаструляции клетки зародыша практически не делятся и не растут. Происходит активное передвижение клеточных масс (морфогенетические движения). В результате гаструляции формируются зародышевые листки (пласты клеток). Гаструляция приводит к образованию зародыша, называемого гаструлой. Типы гаструляции: инвагинация, иммиграция, эпиболия, деламинация.
Наблюдается у животных с изолецитальным типом яиц (голотурия, ланцетник). Вегетативный полюс бластулы впячивается внутрь. В результате противоположные полюса бластодермы практически смыкаются, так что бластоцель либо исчезает, либо от него остаётся небольшая щель. В результате возникает двухслойный зародыш, наружной стенкой которого является первичная эктодерма, а внутренней — первичная энтодерма. Впячивание образует первичный кишечник-архентерон, или гастроцель. Отверстие, при помощи которого он сообщается с наружной средой, называется первичным ртом, или бластопором.
Была описана Мечниковым И. И. у зародышей медуз. Отдельные клетки бластодермы мигрируют в бластоцель, и из них формируется внутренний слой. Возникает двухслойный зародыш. Его наружный слой-эктодерма и внутренний-энтодерма окружают полость первичной кишки-гастроцель.
Наблюдается у животных, имеющих телолецитальные яйца, богатые желтком (пресмыкающиеся, птицы). При этом способе гаструляции мелкие клетки анимального полюса, размножаясь быстрее, обрастают и покрывают снаружи крупные, богатые желтком клетки вегетативного полюса, которые становятся внутренним слоем.
Наблюдается у кишечнополостных. При деламинации бластомеры зародыша делятся параллельно его поверхности, образуя наружный и внутренний зародышевые листки. Этот тип образования гаструлы впервые был описан И. И. Мечниковым у кишечнополостных (сцифомедузы).
Первичный органогенез — процесс образования комплекса осевых органов. В разных группах животных этот процесс характеризуется своими особенностями. Например, у хордовых на этом этапе происходит закладка нервной трубки, хорды и кишечной трубки.
В ходе дальнейшего развития формирование зародыша осуществляется за счёт процессов роста, дифференцировки и морфогенеза. Рост обеспечивает накопление клеточной массы зародыша. В ходе процесса дифференцировки возникают различно специализированные клетки, формирующие различные ткани и органы. Процесс морфогенеза обеспечивает приобретение зародышем специфической формы.
Постэмбриональное развитие бывает прямым и непрямым.
Постэмбриональное развитие сопровождается ростом.
Последовательные изменения строения и процессов жизнедеятельности происходящие в организме
выберите длину слова
выберите первую букву слова
Для всего живого характерны такие процессы, как обмен веществ и энергии, рост и размножение. Живые клетки обладают всеми этими свойствами. В них постоянно осуществляются сложные и многообразные процессы, необходимые для их жизнедеятельности и обеспечения функционирования всего организма.
Каждая живая клетка растет, развивается, реагирует на изменения внешней среды, дышит, поглощает питательные вещества и выделяет продукты обмена веществ. Многие клетки обладают способностью к движению и размножению. Иногда ход этих процессов может нарушаться, что приводит к серьезным изменениям жизнедеятельности клетки.
Дыхание
Клеточное дыхание — это совокупность сложных биохимических реакций, происходящих в клетках живых организмов, в ходе которых происходит расщепление углеводов, липидов и аминокислот до углекислого газа и воды. При этом выделяется энергия, которая используется клеткой для движения, роста и создания необходимых клеточных структур.
Процесс дыхания клетки включает в себя три основных этапа:
Гликолиз — это происходящая в живых клетках биохимическая реакция, которая заключается в расщеплении глюкозы в цитоплазме клетки под действием ферментов без участия кислорода.
Данное явление можно охарактеризовать как одиннадцать последовательно сменяющих друг друга реакций. В результате из одной молекулы глюкозы образуются две молекулы АТФ — универсального источника энергии. Продукты распада при этом попадают в митохондрии, где начинается кислородный этап.
Питание
Питание клетки происходит в результате целого ряда сложных химических реакций. Неорганические вещества, поступившие в клетку из внешней среды (углекислый газ, минеральные соли, вода), преобразуются в органические и входят в состав тела самой клетки в виде белков, сахаров, жиров, масел и др.
Большая часть веществ, поступающих из окружающей среды, расходуется не для получения энергии, а на синтез новых веществ, необходимых клетке или организму.
Клетки животных, грибов и бактерий в качестве питательных веществ используют органические вещества, произведенные другими организмами. Грибы и бактерии поглощают из окружающей среды растворы органических веществ. Большинство животных питаются другими организмами, их останками или продуктами жизнедеятельности, поедая их, переваривая и всасывая органические вещества через эпителий кишечника.
В любом случае каждая клетка перечисленных выше организмов в качестве источника энергии получает готовые органические вещества. Неорганические вещества — вода и минеральные соли — тоже попадают в организмы животных, грибов и бактерий и используются клетками в химических реакциях превращения веществ.
Зеленые клетки растений получают из окружающей среды только неорганические вещества. Затем в хлоропластах этих клеток создаются органические вещества, при этом используется энергия солнечного света. Такой процесс называют фотосинтезом.
Таким образом, питание растений слагается из двух связанных процессов. Почвенное питание обеспечивает поступление в растение воды и минеральных солей, а воздушное питание является процессом поглощения углекислого газа, усвоения солнечной энергии и создание органических веществ из неорганических.
Растения отличаются от других организмов тем, что получают энергию Солнца и неорганические вещества извне, а органические — создают самостоятельно.
Рост
После деления клетки приступают к росту: увеличиваются их объемы, количество органоидов, возникают все необходимые структуры.
Рост клетки — это необратимое увеличение размеров и массы клетки, обусловленное новообразованием элементов их структур.
Существует 3 фазы роста клеток:
Развитие
Клетки не только растут, но и развиваются. В период развития в них появляются определенные отличия от других клеток, в результате чего клетки начинают выполнять определенные возложенные на них функции.
Краткая характеристика процесса развития включает в себя несколько фаз роста и созревания, совершенствование процесса синтеза белка, развитие клеточной мембраны и межклеточных контактов.
Деление
Клетку можно назвать полностью зрелой, когда она готова к делению. Деление клетки — важнейший для биологии процесс, который является основой размножения и индивидуального развития всего живого. Без него невозможно существование организмов.
Деление клетки — процесс образования из родительской клетки двух или более дочерних клеток.
Деление может осуществляться двумя способами: новые клетки возникают в процессе митоза и мейоза.
Наиболее распространенной формой воспроизведения клеток у живых организмов является непрямое деление, или митоз. Благодаря митозу обеспечивается равномерное распределение генетической информации родительской клетки между дочерними.
Митоз — деление клетки, в процессе которого происходит копирование всех элементов клетки и образование двух дочерних клеток в точности таких же, как материнская.
Митоз состоит из четырех последовательных фаз:
Так из одной исходной материнской клетки образуются две новые — дочерние, имеющие хромосомный набор, который по количеству и качеству, содержанию наследственной информации, морфологическим, анатомическим и физиологическим особенностям полностью идентичен родительским.
При возникновении препятствий к делению, таких как недостаток питательных веществ и факторов роста, повреждения ДНК, клетки могут задержаться в фазе подготовки к делению для устранения нарушений, а затем продолжить путь к митозу. Невозможность устранения препятствий ведет к гибели клеток — апоптозу.
Второй способ деления клетки — мейоз.
Мейоз — это деление в зоне созревания половых клеток, которое сопровождается уменьшением числа хромосом в 2 раза. Этот процесс состоит из двух последовательно идущих делений, имеющих те же фазы, что и митоз. Однако продолжительность отдельных фаз и происходящие в них процессы значительно отличаются от процессов, происходящих в митозе.
Отличия митоза от мейоза состоят в следующем:
Движение цитоплазмы
Цитоплазма — это внутренняя среда клетки, объединяющая ее структурные компоненты. Она объединяет клеточные органеллы, является субстратом для протекания биохимических реакций и транспорта химических соединений.
Одним из важнейших свойств цитоплазмы живой клетки является ее способность к движению. Цитоплазма постоянно движется, что играет важную роль в осуществлении обмена и распределении веществ внутри клетки, а также характеризует уровень жизнедеятельности клеточных структур.
Движение цитоплазмы является одним из наиболее чувствительных показателей жизнеспособности клетки. На внешние и внутренние воздействия клетки дают ответ изменением скорости этого движения вплоть до его остановки.